x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{\sqrt{295}i}{20}+\frac{1}{4}\approx 0.25+0.858778202i
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}\approx 0.25-0.858778202i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{1}{2}-x କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଦଶମିକ 1 କୁ ଭଗ୍ନାଂଶ \frac{5}{5} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଯେହେତୁ \frac{5}{5} ଏବଂ \frac{1}{5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
4 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{2}{7} କୁ \frac{4}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଭଗ୍ନାଂଶ \frac{2\times 4}{7\times 5} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
ଦଶମିକ 1 କୁ ଭଗ୍ନାଂଶ \frac{5}{5} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
ଯେହେତୁ \frac{5}{5} ଏବଂ \frac{3}{5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
2 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
ଦଶମିକ 1 କୁ ଭଗ୍ନାଂଶ \frac{5}{5} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
ଯେହେତୁ \frac{5}{5} ଏବଂ \frac{2}{5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
7 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
\frac{7}{5} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{2}{5} କୁ ଗୁଣନ କରି \frac{2}{5} କୁ \frac{7}{5} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{2}{5} କୁ \frac{5}{7} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
ଉଭୟ ଲବ ଓ ହରରେ 5 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
\frac{2}{7} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{8}{35} କୁ ଗୁଣନ କରି \frac{8}{35} କୁ \frac{2}{7} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{8}{35} କୁ \frac{7}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{56}{70}
ଭଗ୍ନାଂଶ \frac{8\times 7}{35\times 2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{4}{5}
14 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{56}{70} ହ୍ରାସ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}-\frac{4}{5}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{4}{5} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+\frac{1}{2}x-\frac{4}{5}=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ \frac{1}{2}, ଏବଂ c ପାଇଁ -\frac{4}{5} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\left(-\frac{4}{5}\right)}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{16}{5}}}{2\left(-1\right)}
4 କୁ -\frac{4}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\frac{1}{2}±\sqrt{-\frac{59}{20}}}{2\left(-1\right)}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{16}{5} ସହିତ \frac{1}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{2\left(-1\right)}
-\frac{59}{20} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -\frac{1}{2} କୁ \frac{i\sqrt{295}}{10} ସହ ଯୋଡନ୍ତୁ.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
-\frac{1}{2}+\frac{i\sqrt{295}}{10} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\frac{\sqrt{295}i}{10}-\frac{1}{2}}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-\frac{1}{2}±\frac{\sqrt{295}i}{10}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -\frac{1}{2} ରୁ \frac{i\sqrt{295}}{10} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
-\frac{1}{2}-\frac{i\sqrt{295}}{10} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{\sqrt{295}i}{20}+\frac{1}{4} x=\frac{\sqrt{295}i}{20}+\frac{1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(1-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
\frac{1}{2}-x କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\left(\frac{5}{5}-\frac{1}{5}\right)}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଦଶମିକ 1 କୁ ଭଗ୍ନାଂଶ \frac{5}{5} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{5-1}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଯେହେତୁ \frac{5}{5} ଏବଂ \frac{1}{5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2}{7}\times \frac{4}{5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
4 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{2\times 4}{7\times 5}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{2}{7} କୁ \frac{4}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{1-\frac{3}{5}}{1+\frac{2}{5}}}
ଭଗ୍ନାଂଶ \frac{2\times 4}{7\times 5} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5}{5}-\frac{3}{5}}{1+\frac{2}{5}}}
ଦଶମିକ 1 କୁ ଭଗ୍ନାଂଶ \frac{5}{5} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{5-3}{5}}{1+\frac{2}{5}}}
ଯେହେତୁ \frac{5}{5} ଏବଂ \frac{3}{5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{1+\frac{2}{5}}}
2 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5}{5}+\frac{2}{5}}}
ଦଶମିକ 1 କୁ ଭଗ୍ନାଂଶ \frac{5}{5} କୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{5+2}{5}}}
ଯେହେତୁ \frac{5}{5} ଏବଂ \frac{2}{5} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{\frac{2}{5}}{\frac{7}{5}}}
7 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{5}\times \frac{5}{7}}
\frac{7}{5} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{2}{5} କୁ ଗୁଣନ କରି \frac{2}{5} କୁ \frac{7}{5} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2\times 5}{5\times 7}}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{2}{5} କୁ \frac{5}{7} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{\frac{8}{35}}{\frac{2}{7}}
ଉଭୟ ଲବ ଓ ହରରେ 5 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{8}{35}\times \frac{7}{2}
\frac{2}{7} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{8}{35} କୁ ଗୁଣନ କରି \frac{8}{35} କୁ \frac{2}{7} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{8\times 7}{35\times 2}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{8}{35} କୁ \frac{7}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{56}{70}
ଭଗ୍ନାଂଶ \frac{8\times 7}{35\times 2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{1}{2}x-x^{2}=\frac{4}{5}
14 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{56}{70} ହ୍ରାସ କରନ୍ତୁ.
-x^{2}+\frac{1}{2}x=\frac{4}{5}
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+\frac{1}{2}x}{-1}=\frac{\frac{4}{5}}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{\frac{1}{2}}{-1}x=\frac{\frac{4}{5}}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{1}{2}x=\frac{\frac{4}{5}}{-1}
\frac{1}{2} କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x=-\frac{4}{5}
\frac{4}{5} କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{4}{5}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{4}{5}+\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{59}{80}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{16} ସହିତ -\frac{4}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{4}\right)^{2}=-\frac{59}{80}
ଗୁଣନୀୟକ x^{2}-\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{59}{80}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{4}=\frac{\sqrt{295}i}{20} x-\frac{1}{4}=-\frac{\sqrt{295}i}{20}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{295}i}{20}+\frac{1}{4} x=-\frac{\sqrt{295}i}{20}+\frac{1}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}