ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-x-1=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-1\right)}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ -1, ଏବଂ c ପାଇଁ -1 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{1±\sqrt{5}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{1±\sqrt{5}}{2} ସମାଧାନ କରନ୍ତୁ.
\left(x-\frac{\sqrt{5}+1}{2}\right)\left(x-\frac{1-\sqrt{5}}{2}\right)>0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-\frac{\sqrt{5}+1}{2}<0 x-\frac{1-\sqrt{5}}{2}<0
ଉତ୍ପାଦ ଧନାତ୍ମକ ହେବା ପାଇଁ, x-\frac{\sqrt{5}+1}{2} ଏବଂ x-\frac{1-\sqrt{5}}{2} ଉଭୟ ଋଣାତ୍ମକ କିମ୍ବା ଉଭୟ ଧନାତ୍ମକ ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x-\frac{\sqrt{5}+1}{2} ଏବଂ x-\frac{1-\sqrt{5}}{2} ଉଭୟ ନେଗେଟିଭ୍‌ ରହିଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x<\frac{1-\sqrt{5}}{2}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x<\frac{1-\sqrt{5}}{2}.
x-\frac{1-\sqrt{5}}{2}>0 x-\frac{\sqrt{5}+1}{2}>0
ଯେତେବେଳେ x-\frac{\sqrt{5}+1}{2} ଏବଂ x-\frac{1-\sqrt{5}}{2} ଉଭୟ ଧନାତ୍ମକ ରହିଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x>\frac{\sqrt{5}+1}{2}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x>\frac{\sqrt{5}+1}{2}.
x<\frac{1-\sqrt{5}}{2}\text{; }x>\frac{\sqrt{5}+1}{2}
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.