ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-6 ab=9
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}-6x+9 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-9 -3,-3
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 9 ପ୍ରଦାନ କରିଥାଏ.
-1-9=-10 -3-3=-6
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=-3
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -6 ପ୍ରଦାନ କରିଥାଏ.
\left(x-3\right)\left(x-3\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
\left(x-3\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
x=3
ସମୀକରଣ ସମାଧାନ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ସମାଧାନ କରନ୍ତୁ.
a+b=-6 ab=1\times 9=9
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx+9 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-9 -3,-3
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 9 ପ୍ରଦାନ କରିଥାଏ.
-1-9=-10 -3-3=-6
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=-3
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -6 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-3x\right)+\left(-3x+9\right)
\left(x^{2}-3x\right)+\left(-3x+9\right) ଭାବରେ x^{2}-6x+9 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-3\right)-3\left(x-3\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(x-3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
x=3
ସମୀକରଣ ସମାଧାନ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}-6x+9=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -6, ଏବଂ c ପାଇଁ 9 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
ବର୍ଗ -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
-4 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
36 କୁ -36 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{-6}{2}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6}{2}
-6 ର ବିପରୀତ ହେଉଛି 6.
x=3
6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-6x+9=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\left(x-3\right)^{2}=0
ଗୁଣନୀୟକ x^{2}-6x+9. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-3=0 x-3=0
ସରଳୀକୃତ କରିବା.
x=3 x=3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
x=3
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.