x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{\sqrt{185}}{10}+\frac{3}{2}\approx 2.860147051
x=-\frac{\sqrt{185}}{10}+\frac{3}{2}\approx 0.139852949
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}-3x+\frac{2}{5}=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{2}{5}}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -3, ଏବଂ c ପାଇଁ \frac{2}{5} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{2}{5}}}{2}
ବର୍ଗ -3.
x=\frac{-\left(-3\right)±\sqrt{9-\frac{8}{5}}}{2}
-4 କୁ \frac{2}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{\frac{37}{5}}}{2}
9 କୁ -\frac{8}{5} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-3\right)±\frac{\sqrt{185}}{5}}{2}
\frac{37}{5} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{3±\frac{\sqrt{185}}{5}}{2}
-3 ର ବିପରୀତ ହେଉଛି 3.
x=\frac{\frac{\sqrt{185}}{5}+3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±\frac{\sqrt{185}}{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ \frac{\sqrt{185}}{5} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{185}}{10}+\frac{3}{2}
3+\frac{\sqrt{185}}{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\frac{\sqrt{185}}{5}+3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±\frac{\sqrt{185}}{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ \frac{\sqrt{185}}{5} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{185}}{10}+\frac{3}{2}
3-\frac{\sqrt{185}}{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{185}}{10}+\frac{3}{2} x=-\frac{\sqrt{185}}{10}+\frac{3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-3x+\frac{2}{5}=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-3x+\frac{2}{5}-\frac{2}{5}=-\frac{2}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{2}{5} ବିୟୋଗ କରନ୍ତୁ.
x^{2}-3x=-\frac{2}{5}
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି \frac{2}{5} ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{2}{5}+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-3x+\frac{9}{4}=-\frac{2}{5}+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-3x+\frac{9}{4}=\frac{37}{20}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{4} ସହିତ -\frac{2}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{3}{2}\right)^{2}=\frac{37}{20}
ଗୁଣନୀୟକ x^{2}-3x+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{37}{20}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{3}{2}=\frac{\sqrt{185}}{10} x-\frac{3}{2}=-\frac{\sqrt{185}}{10}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{185}}{10}+\frac{3}{2} x=-\frac{\sqrt{185}}{10}+\frac{3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}