a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=\frac{x}{3}+\frac{8}{3x}
x\neq 0
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{\sqrt{9a^{2}-32}+3a}{2}
x=\frac{-\sqrt{9a^{2}-32}+3a}{2}
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{\sqrt{9a^{2}-32}+3a}{2}
x=\frac{-\sqrt{9a^{2}-32}+3a}{2}\text{, }|a|\geq \frac{4\sqrt{2}}{3}
ଗ୍ରାଫ୍
କ୍ୱିଜ୍
Algebra
{ x }^{ 2 } -3ax+8=0
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-3ax+8=-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-3ax=-x^{2}-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
\left(-3x\right)a=-x^{2}-8
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-3x\right)a}{-3x}=\frac{-x^{2}-8}{-3x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\frac{-x^{2}-8}{-3x}
-3x ଦ୍ୱାରା ବିଭାଜନ କରିବା -3x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
a=\frac{x}{3}+\frac{8}{3x}
-x^{2}-8 କୁ -3x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}