ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-12x-5=-2
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}-12x-5-\left(-2\right)=-2-\left(-2\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
x^{2}-12x-5-\left(-2\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -2 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-12x-3=0
-5 ରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -12, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)}}{2}
ବର୍ଗ -12.
x=\frac{-\left(-12\right)±\sqrt{144+12}}{2}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{156}}{2}
144 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-12\right)±2\sqrt{39}}{2}
156 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{12±2\sqrt{39}}{2}
-12 ର ବିପରୀତ ହେଉଛି 12.
x=\frac{2\sqrt{39}+12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±2\sqrt{39}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 12 କୁ 2\sqrt{39} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{39}+6
12+2\sqrt{39} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{12-2\sqrt{39}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±2\sqrt{39}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 12 ରୁ 2\sqrt{39} ବିୟୋଗ କରନ୍ତୁ.
x=6-\sqrt{39}
12-2\sqrt{39} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{39}+6 x=6-\sqrt{39}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-12x-5=-2
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-12x-5-\left(-5\right)=-2-\left(-5\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5 ଯୋଡନ୍ତୁ.
x^{2}-12x=-2-\left(-5\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-12x=3
-2 ରୁ -5 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-12x+\left(-6\right)^{2}=3+\left(-6\right)^{2}
-6 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -12 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -6 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-12x+36=3+36
ବର୍ଗ -6.
x^{2}-12x+36=39
3 କୁ 36 ସହ ଯୋଡନ୍ତୁ.
\left(x-6\right)^{2}=39
ଗୁଣନୀୟକ x^{2}-12x+36. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-6\right)^{2}}=\sqrt{39}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-6=\sqrt{39} x-6=-\sqrt{39}
ସରଳୀକୃତ କରିବା.
x=\sqrt{39}+6 x=6-\sqrt{39}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 6 ଯୋଡନ୍ତୁ.