ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+2x+3=12
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}+2x+3-12=12-12
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+3-12=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 12 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+2x-9=0
3 ରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2^{2}-4\left(-9\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -9 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\left(-9\right)}}{2}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4+36}}{2}
-4 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{40}}{2}
4 କୁ 36 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±2\sqrt{10}}{2}
40 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2\sqrt{10}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{10}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{10} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{10}-1
-2+2\sqrt{10} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{10}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{10}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{10} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{10}-1
-2-2\sqrt{10} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{10}-1 x=-\sqrt{10}-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+2x+3=12
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+2x+3-3=12-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x=12-3
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+2x=9
12 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+1^{2}=9+1^{2}
1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+2x+1=9+1
ବର୍ଗ 1.
x^{2}+2x+1=10
9 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x+1\right)^{2}=10
ଗୁଣନୀୟକ x^{2}+2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{10}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+1=\sqrt{10} x+1=-\sqrt{10}
ସରଳୀକୃତ କରିବା.
x=\sqrt{10}-1 x=-\sqrt{10}-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+3=12
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}+2x+3-12=12-12
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+3-12=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 12 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+2x-9=0
3 ରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2^{2}-4\left(-9\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -9 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\left(-9\right)}}{2}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4+36}}{2}
-4 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{40}}{2}
4 କୁ 36 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±2\sqrt{10}}{2}
40 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2\sqrt{10}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{10}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{10} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{10}-1
-2+2\sqrt{10} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{10}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{10}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{10} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{10}-1
-2-2\sqrt{10} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{10}-1 x=-\sqrt{10}-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+2x+3=12
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+2x+3-3=12-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x=12-3
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+2x=9
12 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+1^{2}=9+1^{2}
1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+2x+1=9+1
ବର୍ଗ 1.
x^{2}+2x+1=10
9 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x+1\right)^{2}=10
ଗୁଣନୀୟକ x^{2}+2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{10}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+1=\sqrt{10} x+1=-\sqrt{10}
ସରଳୀକୃତ କରିବା.
x=\sqrt{10}-1 x=-\sqrt{10}-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.