x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{-1+\sqrt{7}i}{2}\approx -0.5+1.322875656i
x=\frac{-\sqrt{7}i-1}{2}\approx -0.5-1.322875656i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}+x+1=-1
x ପାଇବାକୁ 2x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+x+1+1=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 1 ଯୋଡନ୍ତୁ.
x^{2}+x+2=0
2 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1^{2}-4\times 2}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 1, ଏବଂ c ପାଇଁ 2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1-4\times 2}}{2}
ବର୍ଗ 1.
x=\frac{-1±\sqrt{1-8}}{2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{-7}}{2}
1 କୁ -8 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-1±\sqrt{7}i}{2}
-7 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-1+\sqrt{7}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±\sqrt{7}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -1 କୁ i\sqrt{7} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{7}i-1}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±\sqrt{7}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -1 ରୁ i\sqrt{7} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+x+1=-1
x ପାଇବାକୁ 2x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+x=-1-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x=-2
-2 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
-2 କୁ \frac{1}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
ଗୁଣନୀୟକ x^{2}+x+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}