k ପାଇଁ ସମାଧାନ କରନ୍ତୁ
k=-\frac{\sqrt{2}\left(x^{2}+18\right)}{4x}
x\neq 0
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\sqrt{2}\left(\sqrt{k^{2}-9}-k\right)
x=\sqrt{2}\left(-\sqrt{k^{2}-9}-k\right)
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\sqrt{2}\left(\sqrt{k^{2}-9}-k\right)
x=\sqrt{2}\left(-\sqrt{k^{2}-9}-k\right)\text{, }|k|\geq 3
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2\sqrt{2}kx+18=-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
2\sqrt{2}kx=-x^{2}-18
ଉଭୟ ପାର୍ଶ୍ୱରୁ 18 ବିୟୋଗ କରନ୍ତୁ.
2\sqrt{2}xk=-x^{2}-18
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{2\sqrt{2}xk}{2\sqrt{2}x}=\frac{-x^{2}-18}{2\sqrt{2}x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2\sqrt{2}x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=\frac{-x^{2}-18}{2\sqrt{2}x}
2\sqrt{2}x ଦ୍ୱାରା ବିଭାଜନ କରିବା 2\sqrt{2}x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
k=-\frac{\sqrt{2}\left(x^{2}+18\right)}{4x}
-x^{2}-18 କୁ 2\sqrt{2}x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}