ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

p+q=-3 pq=1\times 2=2
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି a^{2}+pa+qa+2 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. p ଏବଂ q ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
p=-2 q=-1
ଯେହେତୁ pq ଧନାତ୍ମକ ଅଟେ, p ଏବଂ q ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁp+q ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ p ଏବଂ q ଋଣାତ୍ମକ ଅଟେ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍‌ ସମାଧାନ.
\left(a^{2}-2a\right)+\left(-a+2\right)
\left(a^{2}-2a\right)+\left(-a+2\right) ଭାବରେ a^{2}-3a+2 ପୁନଃ ଲେଖନ୍ତୁ.
a\left(a-2\right)-\left(a-2\right)
ପ୍ରଥମଟିରେ a ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(a-2\right)\left(a-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ a-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a^{2}-3a+2=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2}
ବର୍ଗ -3.
a=\frac{-\left(-3\right)±\sqrt{9-8}}{2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-\left(-3\right)±\sqrt{1}}{2}
9 କୁ -8 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-\left(-3\right)±1}{2}
1 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=\frac{3±1}{2}
-3 ର ବିପରୀତ ହେଉଛି 3.
a=\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{3±1}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
a=2
4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\frac{2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{3±1}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
a=1
2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a^{2}-3a+2=\left(a-2\right)\left(a-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 2 ଏବଂ x_{2} ପାଇଁ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.