ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

36=x\left(x-3\right)
2 ର 6 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 36 ପ୍ରାପ୍ତ କରନ୍ତୁ.
36=x^{2}-3x
x କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-3x=36
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}-3x-36=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 36 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-36\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -3, ଏବଂ c ପାଇଁ -36 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-36\right)}}{2}
ବର୍ଗ -3.
x=\frac{-\left(-3\right)±\sqrt{9+144}}{2}
-4 କୁ -36 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{153}}{2}
9 କୁ 144 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-3\right)±3\sqrt{17}}{2}
153 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{3±3\sqrt{17}}{2}
-3 ର ବିପରୀତ ହେଉଛି 3.
x=\frac{3\sqrt{17}+3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±3\sqrt{17}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ 3\sqrt{17} ସହ ଯୋଡନ୍ତୁ.
x=\frac{3-3\sqrt{17}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±3\sqrt{17}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ 3\sqrt{17} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
36=x\left(x-3\right)
2 ର 6 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 36 ପ୍ରାପ୍ତ କରନ୍ତୁ.
36=x^{2}-3x
x କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-3x=36
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=36+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-3x+\frac{9}{4}=36+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-3x+\frac{9}{4}=\frac{153}{4}
36 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{3}{2}\right)^{2}=\frac{153}{4}
ଗୁଣନୀୟକ x^{2}-3x+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{3}{2}=\frac{3\sqrt{17}}{2} x-\frac{3}{2}=-\frac{3\sqrt{17}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ଯୋଡନ୍ତୁ.