x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{x_{2}+6}{5}
x_2 ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x_{2}=5x-6
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=-\frac{2\pi n_{1}i}{5\ln(5)}+\frac{x_{2}}{5}+\frac{6}{5}
n_{1}\in \mathrm{Z}
x_2 ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x_{2}=\frac{2\pi n_{1}i}{\ln(5)}+5x-6
n_{1}\in \mathrm{Z}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5^{-5x+x_{2}+6}=1
ସମୀକରଣକୁ ସମାଧାନ କରିବା ପାଇଁ ଘାତାଙ୍କ ଏବଂ ଲଗାରିଦମ୍ଗୁଡିକ ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\log(5^{-5x+x_{2}+6})=\log(1)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ଲଗାରିଦିମ୍ ବାହାର କରନ୍ତୁ.
\left(-5x+x_{2}+6\right)\log(5)=\log(1)
ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି ହୋଇଥିବା ଏକ ସଂଖ୍ୟାର ଲଗାରିଦମ୍ ଏହି ସଂଖ୍ୟାର ଲଗାରିଦମ୍ର ପାୱାର୍ ଗୁଣା ହୋଇଥାଏ.
-5x+x_{2}+6=\frac{\log(1)}{\log(5)}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \log(5) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-5x+x_{2}+6=\log_{5}\left(1\right)
ମୂଳ-ପରିବର୍ତ୍ତନ କରିବା ସୂତ୍ର ଅନୁସାରେ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-5x=-\left(x_{2}+6\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ x_{2}+6 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{x_{2}+6}{-5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
5^{x_{2}+6-5x}=1
ସମୀକରଣକୁ ସମାଧାନ କରିବା ପାଇଁ ଘାତାଙ୍କ ଏବଂ ଲଗାରିଦମ୍ଗୁଡିକ ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\log(5^{x_{2}+6-5x})=\log(1)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ଲଗାରିଦିମ୍ ବାହାର କରନ୍ତୁ.
\left(x_{2}+6-5x\right)\log(5)=\log(1)
ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି ହୋଇଥିବା ଏକ ସଂଖ୍ୟାର ଲଗାରିଦମ୍ ଏହି ସଂଖ୍ୟାର ଲଗାରିଦମ୍ର ପାୱାର୍ ଗୁଣା ହୋଇଥାଏ.
x_{2}+6-5x=\frac{\log(1)}{\log(5)}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \log(5) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x_{2}+6-5x=\log_{5}\left(1\right)
ମୂଳ-ପରିବର୍ତ୍ତନ କରିବା ସୂତ୍ର ଅନୁସାରେ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x_{2}=-\left(6-5x\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ -5x+6 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}