x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-20
x=30
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100=700-10x
10 କୁ 70-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100-700=-10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 700 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-20x-600=-10x
-600 ପ୍ରାପ୍ତ କରିବାକୁ 100 ଏବଂ 700 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-20x-600+10x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
x^{2}-10x-600=0
-10x ପାଇବାକୁ -20x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
a+b=-10 ab=-600
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}-10x-600 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-600 2,-300 3,-200 4,-150 5,-120 6,-100 8,-75 10,-60 12,-50 15,-40 20,-30 24,-25
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -600 ପ୍ରଦାନ କରିଥାଏ.
1-600=-599 2-300=-298 3-200=-197 4-150=-146 5-120=-115 6-100=-94 8-75=-67 10-60=-50 12-50=-38 15-40=-25 20-30=-10 24-25=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-30 b=20
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -10 ପ୍ରଦାନ କରିଥାଏ.
\left(x-30\right)\left(x+20\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
x=30 x=-20
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-30=0 ଏବଂ x+20=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100=700-10x
10 କୁ 70-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100-700=-10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 700 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-20x-600=-10x
-600 ପ୍ରାପ୍ତ କରିବାକୁ 100 ଏବଂ 700 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-20x-600+10x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
x^{2}-10x-600=0
-10x ପାଇବାକୁ -20x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
a+b=-10 ab=1\left(-600\right)=-600
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx-600 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-600 2,-300 3,-200 4,-150 5,-120 6,-100 8,-75 10,-60 12,-50 15,-40 20,-30 24,-25
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -600 ପ୍ରଦାନ କରିଥାଏ.
1-600=-599 2-300=-298 3-200=-197 4-150=-146 5-120=-115 6-100=-94 8-75=-67 10-60=-50 12-50=-38 15-40=-25 20-30=-10 24-25=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-30 b=20
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -10 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-30x\right)+\left(20x-600\right)
\left(x^{2}-30x\right)+\left(20x-600\right) ଭାବରେ x^{2}-10x-600 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-30\right)+20\left(x-30\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 20 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-30\right)\left(x+20\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-30 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=30 x=-20
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-30=0 ଏବଂ x+20=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100=700-10x
10 କୁ 70-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100-700=-10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 700 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-20x-600=-10x
-600 ପ୍ରାପ୍ତ କରିବାକୁ 100 ଏବଂ 700 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-20x-600+10x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
x^{2}-10x-600=0
-10x ପାଇବାକୁ -20x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-600\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -10, ଏବଂ c ପାଇଁ -600 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-600\right)}}{2}
ବର୍ଗ -10.
x=\frac{-\left(-10\right)±\sqrt{100+2400}}{2}
-4 କୁ -600 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{2500}}{2}
100 କୁ 2400 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-10\right)±50}{2}
2500 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{10±50}{2}
-10 ର ବିପରୀତ ହେଉଛି 10.
x=\frac{60}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±50}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 10 କୁ 50 ସହ ଯୋଡନ୍ତୁ.
x=30
60 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{40}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±50}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 10 ରୁ 50 ବିୟୋଗ କରନ୍ତୁ.
x=-20
-40 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=30 x=-20
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100=700-10x
10 କୁ 70-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-20x+100+10x=700
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
x^{2}-10x+100=700
-10x ପାଇବାକୁ -20x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-10x=700-100
ଉଭୟ ପାର୍ଶ୍ୱରୁ 100 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-10x=600
600 ପ୍ରାପ୍ତ କରିବାକୁ 700 ଏବଂ 100 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-10x+\left(-5\right)^{2}=600+\left(-5\right)^{2}
-5 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -10 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -5 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-10x+25=600+25
ବର୍ଗ -5.
x^{2}-10x+25=625
600 କୁ 25 ସହ ଯୋଡନ୍ତୁ.
\left(x-5\right)^{2}=625
ଗୁଣନୀୟକ x^{2}-10x+25. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-5\right)^{2}}=\sqrt{625}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-5=25 x-5=-25
ସରଳୀକୃତ କରିବା.
x=30 x=-20
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}