x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{-1+\sqrt{383}i}{10}\approx -0.1+1.957038579i
x=\frac{-\sqrt{383}i-1}{10}\approx -0.1-1.957038579i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5^{2}x^{2}+5x+96=0
ବିସ୍ତାର କରନ୍ତୁ \left(5x\right)^{2}.
25x^{2}+5x+96=0
2 ର 5 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 25 ପ୍ରାପ୍ତ କରନ୍ତୁ.
x=\frac{-5±\sqrt{5^{2}-4\times 25\times 96}}{2\times 25}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 25, b ପାଇଁ 5, ଏବଂ c ପାଇଁ 96 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25-4\times 25\times 96}}{2\times 25}
ବର୍ଗ 5.
x=\frac{-5±\sqrt{25-100\times 96}}{2\times 25}
-4 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25-9600}}{2\times 25}
-100 କୁ 96 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{-9575}}{2\times 25}
25 କୁ -9600 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-5±5\sqrt{383}i}{2\times 25}
-9575 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-5±5\sqrt{383}i}{50}
2 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5+5\sqrt{383}i}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±5\sqrt{383}i}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -5 କୁ 5i\sqrt{383} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-1+\sqrt{383}i}{10}
-5+5i\sqrt{383} କୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-5\sqrt{383}i-5}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±5\sqrt{383}i}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -5 ରୁ 5i\sqrt{383} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{383}i-1}{10}
-5-5i\sqrt{383} କୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-1+\sqrt{383}i}{10} x=\frac{-\sqrt{383}i-1}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5^{2}x^{2}+5x+96=0
ବିସ୍ତାର କରନ୍ତୁ \left(5x\right)^{2}.
25x^{2}+5x+96=0
2 ର 5 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 25 ପ୍ରାପ୍ତ କରନ୍ତୁ.
25x^{2}+5x=-96
ଉଭୟ ପାର୍ଶ୍ୱରୁ 96 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{25x^{2}+5x}{25}=-\frac{96}{25}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 25 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{5}{25}x=-\frac{96}{25}
25 ଦ୍ୱାରା ବିଭାଜନ କରିବା 25 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{1}{5}x=-\frac{96}{25}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{5}{25} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=-\frac{96}{25}+\left(\frac{1}{10}\right)^{2}
\frac{1}{10} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{1}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{10} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{5}x+\frac{1}{100}=-\frac{96}{25}+\frac{1}{100}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{10} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{5}x+\frac{1}{100}=-\frac{383}{100}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{100} ସହିତ -\frac{96}{25} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{10}\right)^{2}=-\frac{383}{100}
ଗୁଣନୀୟକ x^{2}+\frac{1}{5}x+\frac{1}{100}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{-\frac{383}{100}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{10}=\frac{\sqrt{383}i}{10} x+\frac{1}{10}=-\frac{\sqrt{383}i}{10}
ସରଳୀକୃତ କରିବା.
x=\frac{-1+\sqrt{383}i}{10} x=\frac{-\sqrt{383}i-1}{10}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{10} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}