ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4x^{2}-12x+9=2\left(2x-3\right)
\left(2x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-12x+9=4x-6
2 କୁ 2x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-12x+9-4x=-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-16x+9=-6
-16x ପାଇବାକୁ -12x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}-16x+9+6=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ.
4x^{2}-16x+15=0
15 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 6 ଯୋଗ କରନ୍ତୁ.
a+b=-16 ab=4\times 15=60
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 4x^{2}+ax+bx+15 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 60 ପ୍ରଦାନ କରିଥାଏ.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-10 b=-6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -16 ପ୍ରଦାନ କରିଥାଏ.
\left(4x^{2}-10x\right)+\left(-6x+15\right)
\left(4x^{2}-10x\right)+\left(-6x+15\right) ଭାବରେ 4x^{2}-16x+15 ପୁନଃ ଲେଖନ୍ତୁ.
2x\left(2x-5\right)-3\left(2x-5\right)
ପ୍ରଥମଟିରେ 2x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-5\right)\left(2x-3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{5}{2} x=\frac{3}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x-5=0 ଏବଂ 2x-3=0 ସମାଧାନ କରନ୍ତୁ.
4x^{2}-12x+9=2\left(2x-3\right)
\left(2x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-12x+9=4x-6
2 କୁ 2x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-12x+9-4x=-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-16x+9=-6
-16x ପାଇବାକୁ -12x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}-16x+9+6=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ.
4x^{2}-16x+15=0
15 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 6 ଯୋଗ କରନ୍ତୁ.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 15}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -16, ଏବଂ c ପାଇଁ 15 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 15}}{2\times 4}
ବର୍ଗ -16.
x=\frac{-\left(-16\right)±\sqrt{256-16\times 15}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-16\right)±\sqrt{256-240}}{2\times 4}
-16 କୁ 15 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-16\right)±\sqrt{16}}{2\times 4}
256 କୁ -240 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-16\right)±4}{2\times 4}
16 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{16±4}{2\times 4}
-16 ର ବିପରୀତ ହେଉଛି 16.
x=\frac{16±4}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{20}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{16±4}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 16 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{5}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{20}{8} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{12}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{16±4}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 16 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{3}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{12}{8} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{5}{2} x=\frac{3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}-12x+9=2\left(2x-3\right)
\left(2x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-12x+9=4x-6
2 କୁ 2x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-12x+9-4x=-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-16x+9=-6
-16x ପାଇବାକୁ -12x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}-16x=-6-9
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-16x=-15
-15 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
\frac{4x^{2}-16x}{4}=-\frac{15}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{16}{4}\right)x=-\frac{15}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-4x=-\frac{15}{4}
-16 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-4x+\left(-2\right)^{2}=-\frac{15}{4}+\left(-2\right)^{2}
-2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-4x+4=-\frac{15}{4}+4
ବର୍ଗ -2.
x^{2}-4x+4=\frac{1}{4}
-\frac{15}{4} କୁ 4 ସହ ଯୋଡନ୍ତୁ.
\left(x-2\right)^{2}=\frac{1}{4}
ଗୁଣନୀୟକ x^{2}-4x+4. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{1}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-2=\frac{1}{2} x-2=-\frac{1}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{5}{2} x=\frac{3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.