ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2^{2}x^{2}-2x-3=0
ବିସ୍ତାର କରନ୍ତୁ \left(2x\right)^{2}.
4x^{2}-2x-3=0
2 ର 2 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -2, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-3\right)}}{2\times 4}
ବର୍ଗ -2.
x=\frac{-\left(-2\right)±\sqrt{4-16\left(-3\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{4+48}}{2\times 4}
-16 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{52}}{2\times 4}
4 କୁ 48 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-2\right)±2\sqrt{13}}{2\times 4}
52 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2±2\sqrt{13}}{2\times 4}
-2 ର ବିପରୀତ ହେଉଛି 2.
x=\frac{2±2\sqrt{13}}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{13}+2}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{13}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2\sqrt{13} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{13}+1}{4}
2+2\sqrt{13} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2-2\sqrt{13}}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{13}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2\sqrt{13} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1-\sqrt{13}}{4}
2-2\sqrt{13} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{13}+1}{4} x=\frac{1-\sqrt{13}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2^{2}x^{2}-2x-3=0
ବିସ୍ତାର କରନ୍ତୁ \left(2x\right)^{2}.
4x^{2}-2x-3=0
2 ର 2 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
4x^{2}-2x=3
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{4x^{2}-2x}{4}=\frac{3}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{2}{4}\right)x=\frac{3}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{1}{2}x=\frac{3}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{4}+\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{13}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{16} ସହିତ \frac{3}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{4}\right)^{2}=\frac{13}{16}
ଗୁଣନୀୟକ x^{2}-\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{4}=\frac{\sqrt{13}}{4} x-\frac{1}{4}=-\frac{\sqrt{13}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{13}+1}{4} x=\frac{1-\sqrt{13}}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ଯୋଡନ୍ତୁ.