ମୂଲ୍ୟାୟନ କରିବା
\sqrt{2}+8\approx 9.414213562
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
\left(\sqrt{6}+\sqrt{2}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
\sqrt{6} ର ଚତୁର୍ଭୁଜ ହେଉଛି 6.
6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
ଗୁଣନିୟକ 6=2\times 3. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2}\sqrt{3} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2\times 3} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
2 ପ୍ରାପ୍ତ କରିବାକୁ \sqrt{2} ଏବଂ \sqrt{2} ଗୁଣନ କରନ୍ତୁ.
6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
4 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
6+4\sqrt{3}+2-2\sqrt{2}\sqrt{6}+\sqrt{2}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
8+4\sqrt{3}-2\sqrt{2}\sqrt{6}+\sqrt{2}
8 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
8+4\sqrt{3}-2\sqrt{2}\sqrt{2}\sqrt{3}+\sqrt{2}
ଗୁଣନିୟକ 6=2\times 3. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2}\sqrt{3} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2\times 3} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
8+4\sqrt{3}-2\times 2\sqrt{3}+\sqrt{2}
2 ପ୍ରାପ୍ତ କରିବାକୁ \sqrt{2} ଏବଂ \sqrt{2} ଗୁଣନ କରନ୍ତୁ.
8+4\sqrt{3}-4\sqrt{3}+\sqrt{2}
4 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
8+\sqrt{2}
0 ପାଇବାକୁ 4\sqrt{3} ଏବଂ -4\sqrt{3} ସମ୍ମେଳନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}