y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
y=137750112500000z\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}
z\neq 0\text{ and }x\neq 0
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}x\neq 0\text{, }&\left(y=-137750112500000\text{ and }z=-1\right)\text{ or }\left(y=137750112500000\text{ and }z=1\right)\\x=-\frac{\sqrt{51}\left(\ln(\frac{z}{y})+\ln(137750112500000)\right)z}{\ln(z^{2})}\text{, }&\left(y\neq 137750112500000z\text{ and }z>0\text{ and }y>0\text{ and }z\neq 1\right)\text{ or }\left(y\neq 137750112500000z\text{ and }z<0\text{ and }y<0\text{ and }z\neq -1\right)\end{matrix}\right.
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\sqrt{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
\frac{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}}}{z} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\left(\sqrt{\frac{\frac{\frac{yx}{545\times 2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
\frac{\frac{yx}{545}}{2x} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\left(\sqrt{\frac{\frac{\frac{y}{2\times 545}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
ଉଭୟ ଲବ ଓ ହରରେ x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
1090 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 545 ଗୁଣନ କରନ୍ତୁ.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\left(\sqrt{51}\right)^{2}}}z}}\right)^{2}=50000
ଲବ ଓ ହରକୁ \sqrt{51} ଦ୍ୱାରା ଗୁଣନ କରି \frac{x}{z\sqrt{51}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\times 51}}z}}\right)^{2}=50000
\sqrt{51} ର ଚତୁର୍ଭୁଜ ହେଉଛି 51.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}z}}\right)^{2}=50000
\frac{x\sqrt{51}}{z\times 51} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}}\right)^{2}=50000
ଉଭୟ ଲବ ଓ ହରରେ \sqrt{51} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
2 ର \sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}} ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{\frac{y}{1090}}{455\times 5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
2527525 ପ୍ରାପ୍ତ କରିବାକୁ 455 ଏବଂ 5555 ଗୁଣନ କରନ୍ତୁ.
\frac{y}{1090\times 2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
\frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{y}{2755002250\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
2755002250 ପ୍ରାପ୍ତ କରିବାକୁ 1090 ଏବଂ 2527525 ଗୁଣନ କରନ୍ତୁ.
\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y=50000
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
\frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1} ଦ୍ୱାରା ବିଭାଜନ କରିବା \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
y=137750112500000z\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}
50000 କୁ \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}