w.r.t. θ ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{1}{\left(\cos(\theta )\right)^{2}}
ମୂଲ୍ୟାୟନ କରିବା
\tan(\theta )
ଗ୍ରାଫ୍
କ୍ୱିଜ୍
Trigonometry
\tan ( \theta )
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\mathrm{d}}{\mathrm{d}\theta }(\frac{\sin(\theta )}{\cos(\theta )})
ଟାଞ୍ଜେଣ୍ଟର ପରିଭାଷା ବ୍ୟବହାର କରନ୍ତୁ.
\frac{\cos(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))-\sin(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\cos(\theta ))}{\left(\cos(\theta )\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍ଯୋଗ୍ୟ ଫଙ୍କସନ୍ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\cos(\theta )\cos(\theta )-\sin(\theta )\left(-\sin(\theta )\right)}{\left(\cos(\theta )\right)^{2}}
sin(\theta ) ର ଡେରିଭେଟିଭ୍ ହେଉଛି cos(\theta ), ଏବଂ cos(\theta ) ର ଡେରିଭେଟିଭ୍ ହେଉଛି −sin(\theta ).
\frac{\left(\cos(\theta )\right)^{2}+\left(\sin(\theta )\right)^{2}}{\left(\cos(\theta )\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{1}{\left(\cos(\theta )\right)^{2}}
ପାଇଥାଗୋରୀୟ ଆଇଡେଣ୍ଟିଟି ବ୍ୟବହାର କରନ୍ତୁ.
\left(\sec(\theta )\right)^{2}
ସେକାଣ୍ଟର ପରିଭାଷା ବ୍ୟବହାର କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}