x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\sqrt{x^{2}-9x+4}\right)^{2}=\left(\sqrt{x^{2}-5}\right)^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-9x+4=\left(\sqrt{x^{2}-5}\right)^{2}
2 ର \sqrt{x^{2}-9x+4} ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ x^{2}-9x+4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
x^{2}-9x+4=x^{2}-5
2 ର \sqrt{x^{2}-5} ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ x^{2}-5 ପ୍ରାପ୍ତ କରନ୍ତୁ.
x^{2}-9x+4-x^{2}=-5
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-9x+4=-5
0 ପାଇବାକୁ x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-9x=-5-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-9x=-9
-9 ପ୍ରାପ୍ତ କରିବାକୁ -5 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-9}{-9}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=1
1 ପ୍ରାପ୍ତ କରିବାକୁ -9 କୁ -9 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\sqrt{1^{2}-9+4}=\sqrt{1^{2}-5}
ସମୀକରଣ \sqrt{x^{2}-9x+4}=\sqrt{x^{2}-5} ରେ x ସ୍ଥାନରେ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
2i=2i
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ x=1 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
x=1
ସମୀକରଣ \sqrt{x^{2}-9x+4}=\sqrt{x^{2}-5} ଏକ ସ୍ଵତନ୍ତ୍ର ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}