ମୂଲ୍ୟାୟନ କରିବା
5
ଗୁଣକ
5
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\sqrt{\left(3-\frac{\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
3 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\sqrt{\left(\frac{3\times 2}{2}-\frac{\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 3 କୁ \frac{2}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\sqrt{\left(\frac{3\times 2-\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
ଯେହେତୁ \frac{3\times 2}{2} ଏବଂ \frac{\sqrt{14}}{2} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\sqrt{\left(\frac{6-\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
3\times 2-\sqrt{14} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
\frac{6-\sqrt{14}}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}}{2}+\frac{3\times 2}{2}\right)^{2}}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 3 କୁ \frac{2}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}+3\times 2}{2}\right)^{2}}
ଯେହେତୁ \frac{\sqrt{14}}{2} ଏବଂ \frac{3\times 2}{2} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}+6}{2}\right)^{2}}
\sqrt{14}+3\times 2 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
\frac{\sqrt{14}+6}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
ଯେହେତୁ \frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}} ଏବଂ \frac{\left(\sqrt{14}+6\right)^{2}}{2^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\sqrt{\frac{36-12\sqrt{14}+\left(\sqrt{14}\right)^{2}+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
\left(6-\sqrt{14}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
\sqrt{\frac{36-12\sqrt{14}+14+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
\sqrt{14} ର ଚତୁର୍ଭୁଜ ହେଉଛି 14.
\sqrt{\frac{50-12\sqrt{14}+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
50 ପ୍ରାପ୍ତ କରିବାକୁ 36 ଏବଂ 14 ଯୋଗ କରନ୍ତୁ.
\sqrt{\frac{50-12\sqrt{14}+\left(\sqrt{14}\right)^{2}+12\sqrt{14}+36}{2^{2}}}
\left(\sqrt{14}+6\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
\sqrt{\frac{50-12\sqrt{14}+14+12\sqrt{14}+36}{2^{2}}}
\sqrt{14} ର ଚତୁର୍ଭୁଜ ହେଉଛି 14.
\sqrt{\frac{50-12\sqrt{14}+50+12\sqrt{14}}{2^{2}}}
50 ପ୍ରାପ୍ତ କରିବାକୁ 14 ଏବଂ 36 ଯୋଗ କରନ୍ତୁ.
\sqrt{\frac{100-12\sqrt{14}+12\sqrt{14}}{2^{2}}}
100 ପ୍ରାପ୍ତ କରିବାକୁ 50 ଏବଂ 50 ଯୋଗ କରନ୍ତୁ.
\sqrt{\frac{100}{2^{2}}}
0 ପାଇବାକୁ -12\sqrt{14} ଏବଂ 12\sqrt{14} ସମ୍ମେଳନ କରନ୍ତୁ.
\sqrt{\frac{100}{4}}
2 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\sqrt{25}
25 ପ୍ରାପ୍ତ କରିବାକୁ 100 କୁ 4 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
5
25 ର ଚତୁର୍ଭୁଜ ମୂଳ ଗଣନା କରନ୍ତୁ ଏବଂ 5 ପ୍ରାପ୍ତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}