ମୂଲ୍ୟାୟନ କରିବା
\frac{2\sqrt{154}}{11}+24\approx 26.256304299
ଗୁଣକ
\frac{2 {(\sqrt{154} + 132)}}{11} = 26.256304299271065
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{2\sqrt{154}}{11}+8\times 3
ଗୁଣନିୟକ 616=2^{2}\times 154. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2^{2}}\sqrt{154} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 154} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{2\sqrt{154}}{11}+24
24 ପ୍ରାପ୍ତ କରିବାକୁ 8 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{2\sqrt{154}}{11}+\frac{24\times 11}{11}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 24 କୁ \frac{11}{11} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\sqrt{154}+24\times 11}{11}
ଯେହେତୁ \frac{2\sqrt{154}}{11} ଏବଂ \frac{24\times 11}{11} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{2\sqrt{154}+264}{11}
2\sqrt{154}+24\times 11 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}