ମୂଲ୍ୟାୟନ କରିବା
\frac{\sqrt{10}}{2}-6\sqrt{7}\approx -14.293369036
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\sqrt{\frac{4+1}{2}}-3\sqrt{28}
4 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\sqrt{\frac{5}{2}}-3\sqrt{28}
5 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
\frac{\sqrt{5}}{\sqrt{2}}-3\sqrt{28}
ସ୍କେୟାର୍ ରୁଟ୍ \frac{\sqrt{5}}{\sqrt{2}} ର ଡିଭିଜନ୍ ଭାବରେ ଡିଭିଜନ୍ \sqrt{\frac{5}{2}} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{28}
ଲବ ଓ ହରକୁ \sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{\sqrt{5}}{\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{\sqrt{5}\sqrt{2}}{2}-3\sqrt{28}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
\frac{\sqrt{10}}{2}-3\sqrt{28}
ଏକାଧିକ \sqrt{5} ଏବଂ \sqrt{2}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{\sqrt{10}}{2}-3\times 2\sqrt{7}
ଗୁଣନିୟକ 28=2^{2}\times 7. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2^{2}}\sqrt{7} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 7} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{\sqrt{10}}{2}-6\sqrt{7}
-6 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{\sqrt{10}}{2}+\frac{2\left(-6\right)\sqrt{7}}{2}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. -6\sqrt{7} କୁ \frac{2}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\sqrt{10}+2\left(-6\right)\sqrt{7}}{2}
ଯେହେତୁ \frac{\sqrt{10}}{2} ଏବଂ \frac{2\left(-6\right)\sqrt{7}}{2} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\sqrt{10}-12\sqrt{7}}{2}
\sqrt{10}+2\left(-6\right)\sqrt{7} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}