ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(\sqrt{-x+12}\right)^{2}=x^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
-x+12=x^{2}
2 ର \sqrt{-x+12} ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ -x+12 ପ୍ରାପ୍ତ କରନ୍ତୁ.
-x+12-x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-x+12=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-1 ab=-12=-12
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -x^{2}+ax+bx+12 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-12 2,-6 3,-4
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -12 ପ୍ରଦାନ କରିଥାଏ.
1-12=-11 2-6=-4 3-4=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=3 b=-4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -1 ପ୍ରଦାନ କରିଥାଏ.
\left(-x^{2}+3x\right)+\left(-4x+12\right)
\left(-x^{2}+3x\right)+\left(-4x+12\right) ଭାବରେ -x^{2}-x+12 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(-x+3\right)+4\left(-x+3\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-x+3\right)\left(x+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -x+3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=3 x=-4
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, -x+3=0 ଏବଂ x+4=0 ସମାଧାନ କରନ୍ତୁ.
\sqrt{-3+12}=3
ସମୀକରଣ \sqrt{-x+12}=x ରେ x ସ୍ଥାନରେ 3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
3=3
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ x=3 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
\sqrt{-\left(-4\right)+12}=-4
ସମୀକରଣ \sqrt{-x+12}=x ରେ x ସ୍ଥାନରେ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
4=-4
ସରଳୀକୃତ କରନ୍ତୁ. x=-4 ମୂଲ୍ୟ ସମୀକରଣକୁ ସନ୍ତୁଷ୍ଟ କରେ ନାହିଁ କାରଣ ବାମ ଏବଂ ଡାହାଣ ପାର୍ଶ୍ୱରେ ବିପରୀତ ଚିହ୍ନ ଥାଏ.
x=3
ସମୀକରଣ \sqrt{12-x}=x ଏକ ସ୍ଵତନ୍ତ୍ର ସମାଧାନ ହୋଇଛି.