n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
n=-7
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\sqrt{-5n+14}\right)^{2}=\left(-n\right)^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
-5n+14=\left(-n\right)^{2}
2 ର \sqrt{-5n+14} ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ -5n+14 ପ୍ରାପ୍ତ କରନ୍ତୁ.
-5n+14=n^{2}
2 ର -n ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ n^{2} ପ୍ରାପ୍ତ କରନ୍ତୁ.
-5n+14-n^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ n^{2} ବିୟୋଗ କରନ୍ତୁ.
-n^{2}-5n+14=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-5 ab=-14=-14
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -n^{2}+an+bn+14 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-14 2,-7
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -14 ପ୍ରଦାନ କରିଥାଏ.
1-14=-13 2-7=-5
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=2 b=-7
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(-n^{2}+2n\right)+\left(-7n+14\right)
\left(-n^{2}+2n\right)+\left(-7n+14\right) ଭାବରେ -n^{2}-5n+14 ପୁନଃ ଲେଖନ୍ତୁ.
n\left(-n+2\right)+7\left(-n+2\right)
ପ୍ରଥମଟିରେ n ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 7 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-n+2\right)\left(n+7\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -n+2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
n=2 n=-7
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, -n+2=0 ଏବଂ n+7=0 ସମାଧାନ କରନ୍ତୁ.
\sqrt{-5\times 2+14}=-2
ସମୀକରଣ \sqrt{-5n+14}=-n ରେ n ସ୍ଥାନରେ 2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
2=-2
ସରଳୀକୃତ କରନ୍ତୁ. n=2 ମୂଲ୍ୟ ସମୀକରଣକୁ ସନ୍ତୁଷ୍ଟ କରେ ନାହିଁ କାରଣ ବାମ ଏବଂ ଡାହାଣ ପାର୍ଶ୍ୱରେ ବିପରୀତ ଚିହ୍ନ ଥାଏ.
\sqrt{-5\left(-7\right)+14}=-\left(-7\right)
ସମୀକରଣ \sqrt{-5n+14}=-n ରେ n ସ୍ଥାନରେ -7 ପ୍ରତିବଦଳ କରନ୍ତୁ.
7=7
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ n=-7 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
n=-7
ସମୀକରଣ \sqrt{14-5n}=-n ଏକ ସ୍ଵତନ୍ତ୍ର ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}