ମୂଲ୍ୟାୟନ କରିବା
\frac{200000\sqrt{1100755045}}{1213}\approx 5470342.734145545
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\sqrt{\frac{6\times 607\times 10^{13}\times 5.98}{900+6378}}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 13 ପାଇବାକୁ -11 ଏବଂ 24 ଯୋଡନ୍ତୁ.
\sqrt{\frac{3642\times 10^{13}\times 5.98}{900+6378}}
3642 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 607 ଗୁଣନ କରନ୍ତୁ.
\sqrt{\frac{3642\times 10000000000000\times 5.98}{900+6378}}
13 ର 10 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 10000000000000 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\sqrt{\frac{36420000000000000\times 5.98}{900+6378}}
36420000000000000 ପ୍ରାପ୍ତ କରିବାକୁ 3642 ଏବଂ 10000000000000 ଗୁଣନ କରନ୍ତୁ.
\sqrt{\frac{217791600000000000}{900+6378}}
217791600000000000 ପ୍ରାପ୍ତ କରିବାକୁ 36420000000000000 ଏବଂ 5.98 ଗୁଣନ କରନ୍ତୁ.
\sqrt{\frac{217791600000000000}{7278}}
7278 ପ୍ରାପ୍ତ କରିବାକୁ 900 ଏବଂ 6378 ଯୋଗ କରନ୍ତୁ.
\sqrt{\frac{36298600000000000}{1213}}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{217791600000000000}{7278} ହ୍ରାସ କରନ୍ତୁ.
\frac{\sqrt{36298600000000000}}{\sqrt{1213}}
ସ୍କେୟାର୍ ରୁଟ୍ \frac{\sqrt{36298600000000000}}{\sqrt{1213}} ର ଡିଭିଜନ୍ ଭାବରେ ଡିଭିଜନ୍ \sqrt{\frac{36298600000000000}{1213}} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
\frac{200000\sqrt{907465}}{\sqrt{1213}}
ଗୁଣନିୟକ 36298600000000000=200000^{2}\times 907465. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{200000^{2}}\sqrt{907465} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{200000^{2}\times 907465} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 200000^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{200000\sqrt{907465}\sqrt{1213}}{\left(\sqrt{1213}\right)^{2}}
ଲବ ଓ ହରକୁ \sqrt{1213} ଦ୍ୱାରା ଗୁଣନ କରି \frac{200000\sqrt{907465}}{\sqrt{1213}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{200000\sqrt{907465}\sqrt{1213}}{1213}
\sqrt{1213} ର ଚତୁର୍ଭୁଜ ହେଉଛି 1213.
\frac{200000\sqrt{1100755045}}{1213}
ଏକାଧିକ \sqrt{907465} ଏବଂ \sqrt{1213}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}