w.r.t. ϕ ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\cos(ϕ)
ମୂଲ୍ୟାୟନ କରିବା
\sin(ϕ)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\mathrm{d}}{\mathrm{d}ϕ}(\sin(ϕ))=\left(\lim_{h\to 0}\frac{\sin(ϕ+h)-\sin(ϕ)}{h}\right)
ଏକ ଫଙ୍କସନ୍ f\left(x\right) ପାଇଁ, ଡେରିଭେଟିଭ୍ ହେଉଛି \frac{f\left(x+h\right)-f\left(x\right)}{h} ର ସୀମା ଯେତେବେଳେ h, 0 କୁ ଯାଇଥାଏ, ଯଦି ସେହି ସୀମା ବିଦ୍ୟମାନ ରହିଥାଏ.
\lim_{h\to 0}\frac{\sin(h+ϕ)-\sin(ϕ)}{h}
ସାଇନ୍ ପାଇଁ ସମଷ୍ଟି ସୂତ୍ର ବ୍ୟବହାର କରନ୍ତୁ.
\lim_{h\to 0}\frac{\sin(ϕ)\left(\cos(h)-1\right)+\cos(ϕ)\sin(h)}{h}
\sin(ϕ) ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(\lim_{h\to 0}\sin(ϕ)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(ϕ)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ସୀମାକୁ ପୁଣି ଲେଖନ୍ତୁ.
\sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ଏହି ତଥ୍ୟ ବ୍ୟବହାର କରନ୍ତୁ ଯେ ϕ ହେଉଛି ଏକ ସ୍ଥିରାଙ୍କ ଯେତେବେଳେ ଗଣନା ସୀମା h ରୁ 0 କୁ ଯାଇଥାଏ.
\sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ)
ସୀମା \lim_{ϕ\to 0}\frac{\sin(ϕ)}{ϕ} ହେଉଛି 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ସୀମା \lim_{h\to 0}\frac{\cos(h)-1}{h} ମୂଲ୍ୟାୟନ କରିବାକୁ, ପ୍ରଥମେ ଲବ ଏବଂ ହରକୁ \cos(h)+1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 କୁ \cos(h)-1 ଥର ଗୁଣନ କରନ୍ତୁ.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ପାଇଥାଗୋରୀୟ ଆଇଡେଣ୍ଟିଟି ବ୍ୟବହାର କରନ୍ତୁ.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ସୀମାକୁ ପୁଣି ଲେଖନ୍ତୁ.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ସୀମା \lim_{ϕ\to 0}\frac{\sin(ϕ)}{ϕ} ହେଉଛି 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
ଏହି ତଥ୍ୟ ବ୍ୟବହାର କରନ୍ତୁ ଯେ 0 ଠାରେ \frac{\sin(h)}{\cos(h)+1} ଧାରାବାହିକ ଅଟେ.
\cos(ϕ)
ଅଭିବ୍ୟକ୍ତି \sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ) ରେ ମୂଲ୍ୟ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}