x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}x=\frac{4\pi }{3}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }g=\pi n_{1}\\x\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }g=\pi n_{2}+\frac{\pi }{2}\end{matrix}\right.
g ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}\\g=\pi n_{1}+\frac{\pi }{2}\text{, }n_{1}\in \mathrm{Z}\text{, }&\text{unconditionally}\\g\neq \pi n_{2}\text{, }\forall n_{2}\in \mathrm{Z}\text{, }&x=\frac{4\pi }{3}\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
3\cot(g)\left(2x-\pi \right)=3\cot(g)\left(x+\frac{\pi }{3}\right)
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)\left(x+\frac{\pi }{3}\right)
3\cot(g) କୁ 2x-\pi ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+3\cot(g)\times \frac{\pi }{3}
3\cot(g) କୁ x+\frac{\pi }{3} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\frac{3\pi }{3}\cot(g)
3\times \frac{\pi }{3} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\pi \cot(g)
3 ଏବଂ 3 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
6\cot(g)x-3\cot(g)\pi -3\cot(g)x=\pi \cot(g)
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3\cot(g)x ବିୟୋଗ କରନ୍ତୁ.
3\cot(g)x-3\cot(g)\pi =\pi \cot(g)
3\cot(g)x ପାଇବାକୁ 6\cot(g)x ଏବଂ -3\cot(g)x ସମ୍ମେଳନ କରନ୍ତୁ.
3\cot(g)x=\pi \cot(g)+3\cot(g)\pi
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3\cot(g)\pi ଯୋଡନ୍ତୁ.
3\cot(g)x=4\pi \cot(g)
4\pi \cot(g) ପାଇବାକୁ \pi \cot(g) ଏବଂ 3\cot(g)\pi ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{3\cot(g)x}{3\cot(g)}=\frac{4\pi \cot(g)}{3\cot(g)}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3\cot(g) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{4\pi \cot(g)}{3\cot(g)}
3\cot(g) ଦ୍ୱାରା ବିଭାଜନ କରିବା 3\cot(g) ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x=\frac{4\pi }{3}
4\pi \cot(g) କୁ 3\cot(g) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}