C ପାଇଁ ସମାଧାନ କରନ୍ତୁ
C=\frac{5}{4f}
f\neq 0
f ପାଇଁ ସମାଧାନ କରନ୍ତୁ
f=\frac{5}{4C}
C\neq 0
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
Cf\left(-4\right)=\frac{16+3\left(-4\right)+11}{-4+1}
2 ର -4 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 16 ପ୍ରାପ୍ତ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{16-12+11}{-4+1}
-12 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ -4 ଗୁଣନ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{4+11}{-4+1}
4 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{15}{-4+1}
15 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 11 ଯୋଗ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{15}{-3}
-3 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
Cf\left(-4\right)=-5
-5 ପ୍ରାପ୍ତ କରିବାକୁ 15 କୁ -3 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\left(-4f\right)C=-5
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-4f\right)C}{-4f}=-\frac{5}{-4f}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -4f ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
C=-\frac{5}{-4f}
-4f ଦ୍ୱାରା ବିଭାଜନ କରିବା -4f ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
C=\frac{5}{4f}
-5 କୁ -4f ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{16+3\left(-4\right)+11}{-4+1}
2 ର -4 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 16 ପ୍ରାପ୍ତ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{16-12+11}{-4+1}
-12 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ -4 ଗୁଣନ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{4+11}{-4+1}
4 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{15}{-4+1}
15 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 11 ଯୋଗ କରନ୍ତୁ.
Cf\left(-4\right)=\frac{15}{-3}
-3 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
Cf\left(-4\right)=-5
-5 ପ୍ରାପ୍ତ କରିବାକୁ 15 କୁ -3 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\left(-4C\right)f=-5
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-4C\right)f}{-4C}=-\frac{5}{-4C}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -4C ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
f=-\frac{5}{-4C}
-4C ଦ୍ୱାରା ବିଭାଜନ କରିବା -4C ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
f=\frac{5}{4C}
-5 କୁ -4C ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}