ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x+2y=3+3y+1
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 3 କୁ 1+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x+2y=4+3y
4 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
x+2y-3y=4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3y ବିୟୋଗ କରନ୍ତୁ.
x-y=4
-y ପାଇବାକୁ 2y ଏବଂ -3y ସମ୍ମେଳନ କରନ୍ତୁ.
8-y=2-2y+3x
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ 1-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
8-y+2y=2+3x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2y ଯୋଡନ୍ତୁ.
8+y=2+3x
y ପାଇବାକୁ -y ଏବଂ 2y ସମ୍ମେଳନ କରନ୍ତୁ.
8+y-3x=2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
y-3x=2-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
y-3x=-6
-6 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x-y=4,-3x+y=-6
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x-y=4
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
x=y+4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ y ଯୋଡନ୍ତୁ.
-3\left(y+4\right)+y=-6
ଅନ୍ୟ ସମୀକରଣ, -3x+y=-6 ରେ x ସ୍ଥାନରେ y+4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-3y-12+y=-6
-3 କୁ y+4 ଥର ଗୁଣନ କରନ୍ତୁ.
-2y-12=-6
-3y କୁ y ସହ ଯୋଡନ୍ତୁ.
-2y=6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 12 ଯୋଡନ୍ତୁ.
y=-3
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-3+4
x=y+4 ରେ y ପାଇଁ -3 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=1
4 କୁ -3 ସହ ଯୋଡନ୍ତୁ.
x=1,y=-3
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
x+2y=3+3y+1
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 3 କୁ 1+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x+2y=4+3y
4 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
x+2y-3y=4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3y ବିୟୋଗ କରନ୍ତୁ.
x-y=4
-y ପାଇବାକୁ 2y ଏବଂ -3y ସମ୍ମେଳନ କରନ୍ତୁ.
8-y=2-2y+3x
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ 1-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
8-y+2y=2+3x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2y ଯୋଡନ୍ତୁ.
8+y=2+3x
y ପାଇବାକୁ -y ଏବଂ 2y ସମ୍ମେଳନ କରନ୍ତୁ.
8+y-3x=2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
y-3x=2-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
y-3x=-6
-6 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x-y=4,-3x+y=-6
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-\left(-3\right)\right)}&-\frac{-1}{1-\left(-\left(-3\right)\right)}\\-\frac{-3}{1-\left(-\left(-3\right)\right)}&\frac{1}{1-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\-\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 4-\frac{1}{2}\left(-6\right)\\-\frac{3}{2}\times 4-\frac{1}{2}\left(-6\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=1,y=-3
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
x+2y=3+3y+1
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 3 କୁ 1+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x+2y=4+3y
4 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
x+2y-3y=4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3y ବିୟୋଗ କରନ୍ତୁ.
x-y=4
-y ପାଇବାକୁ 2y ଏବଂ -3y ସମ୍ମେଳନ କରନ୍ତୁ.
8-y=2-2y+3x
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ 1-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
8-y+2y=2+3x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2y ଯୋଡନ୍ତୁ.
8+y=2+3x
y ପାଇବାକୁ -y ଏବଂ 2y ସମ୍ମେଳନ କରନ୍ତୁ.
8+y-3x=2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
y-3x=2-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
y-3x=-6
-6 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x-y=4,-3x+y=-6
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
-3x-3\left(-1\right)y=-3\times 4,-3x+y=-6
x ଏବଂ -3x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ -3 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-3x+3y=-12,-3x+y=-6
ସରଳୀକୃତ କରିବା.
-3x+3x+3y-y=-12+6
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -3x+3y=-12 ଠାରୁ -3x+y=-6 କୁ ବିୟୋଗ କରନ୍ତୁ.
3y-y=-12+6
-3x କୁ 3x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -3x ଏବଂ 3x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
2y=-12+6
3y କୁ -y ସହ ଯୋଡନ୍ତୁ.
2y=-6
-12 କୁ 6 ସହ ଯୋଡନ୍ତୁ.
y=-3
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-3x-3=-6
-3x+y=-6 ରେ y ପାଇଁ -3 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
-3x=-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
x=1
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=1,y=-3
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.