ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

10x-10y=-10,-10x+8y=12
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
10x-10y=-10
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
10x=10y-10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 10y ଯୋଡନ୍ତୁ.
x=\frac{1}{10}\left(10y-10\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=y-1
\frac{1}{10} କୁ -10+10y ଥର ଗୁଣନ କରନ୍ତୁ.
-10\left(y-1\right)+8y=12
ଅନ୍ୟ ସମୀକରଣ, -10x+8y=12 ରେ x ସ୍ଥାନରେ y-1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-10y+10+8y=12
-10 କୁ y-1 ଥର ଗୁଣନ କରନ୍ତୁ.
-2y+10=12
-10y କୁ 8y ସହ ଯୋଡନ୍ତୁ.
-2y=2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
y=-1
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-1-1
x=y-1 ରେ y ପାଇଁ -1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=-2
-1 କୁ -1 ସହ ଯୋଡନ୍ତୁ.
x=-2,y=-1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
10x-10y=-10,-10x+8y=12
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\12\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{10\times 8-\left(-10\left(-10\right)\right)}&-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}\\-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}&\frac{10}{10\times 8-\left(-10\left(-10\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&-\frac{1}{2}\\-\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)-\frac{1}{2}\times 12\\-\frac{1}{2}\left(-10\right)-\frac{1}{2}\times 12\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=-2,y=-1
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
10x-10y=-10,-10x+8y=12
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
-10\times 10x-10\left(-10\right)y=-10\left(-10\right),10\left(-10\right)x+10\times 8y=10\times 12
10x ଏବଂ -10x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ -10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-100x+100y=100,-100x+80y=120
ସରଳୀକୃତ କରିବା.
-100x+100x+100y-80y=100-120
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -100x+100y=100 ଠାରୁ -100x+80y=120 କୁ ବିୟୋଗ କରନ୍ତୁ.
100y-80y=100-120
-100x କୁ 100x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -100x ଏବଂ 100x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
20y=100-120
100y କୁ -80y ସହ ଯୋଡନ୍ତୁ.
20y=-20
100 କୁ -120 ସହ ଯୋଡନ୍ତୁ.
y=-1
ଉଭୟ ପାର୍ଶ୍ୱକୁ 20 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-10x+8\left(-1\right)=12
-10x+8y=12 ରେ y ପାଇଁ -1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
-10x-8=12
8 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
-10x=20
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 8 ଯୋଡନ୍ତୁ.
x=-2
ଉଭୟ ପାର୍ଶ୍ୱକୁ -10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-2,y=-1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.