ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y, x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

y-x=1500
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
y-x=1500,0.1y+0.06x=1070
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
y-x=1500
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ y କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା y ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
y=x+1500
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ x ଯୋଡନ୍ତୁ.
0.1\left(x+1500\right)+0.06x=1070
ଅନ୍ୟ ସମୀକରଣ, 0.1y+0.06x=1070 ରେ y ସ୍ଥାନରେ x+1500 ପ୍ରତିବଦଳ କରନ୍ତୁ.
0.1x+150+0.06x=1070
0.1 କୁ x+1500 ଥର ଗୁଣନ କରନ୍ତୁ.
0.16x+150=1070
\frac{x}{10} କୁ \frac{3x}{50} ସହ ଯୋଡନ୍ତୁ.
0.16x=920
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 150 ବିୟୋଗ କରନ୍ତୁ.
x=5750
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 0.16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
y=5750+1500
y=x+1500 ରେ x ପାଇଁ 5750 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y=7250
1500 କୁ 5750 ସହ ଯୋଡନ୍ତୁ.
y=7250,x=5750
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
y-x=1500
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
y-x=1500,0.1y+0.06x=1070
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1500\\1070\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1500\\1070\end{matrix}\right)
\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1500\\1070\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1500\\1070\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{0.06}{0.06-\left(-0.1\right)}&-\frac{-1}{0.06-\left(-0.1\right)}\\-\frac{0.1}{0.06-\left(-0.1\right)}&\frac{1}{0.06-\left(-0.1\right)}\end{matrix}\right)\left(\begin{matrix}1500\\1070\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.375&6.25\\-0.625&6.25\end{matrix}\right)\left(\begin{matrix}1500\\1070\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.375\times 1500+6.25\times 1070\\-0.625\times 1500+6.25\times 1070\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7250\\5750\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
y=7250,x=5750
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ y ଏବଂ x ବାହାର କରନ୍ତୁ.
y-x=1500
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
y-x=1500,0.1y+0.06x=1070
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
0.1y+0.1\left(-1\right)x=0.1\times 1500,0.1y+0.06x=1070
y ଏବଂ \frac{y}{10} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 0.1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
0.1y-0.1x=150,0.1y+0.06x=1070
ସରଳୀକୃତ କରିବା.
0.1y-0.1y-0.1x-0.06x=150-1070
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା 0.1y-0.1x=150 ଠାରୁ 0.1y+0.06x=1070 କୁ ବିୟୋଗ କରନ୍ତୁ.
-0.1x-0.06x=150-1070
\frac{y}{10} କୁ -\frac{y}{10} ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ \frac{y}{10} ଏବଂ -\frac{y}{10} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-0.16x=150-1070
-\frac{x}{10} କୁ -\frac{3x}{50} ସହ ଯୋଡନ୍ତୁ.
-0.16x=-920
150 କୁ -1070 ସହ ଯୋଡନ୍ତୁ.
x=5750
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -0.16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
0.1y+0.06\times 5750=1070
0.1y+0.06x=1070 ରେ x ପାଇଁ 5750 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
0.1y+345=1070
0.06 କୁ 5750 ଥର ଗୁଣନ କରନ୍ତୁ.
0.1y=725
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 345 ବିୟୋଗ କରନ୍ତୁ.
y=7250
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
y=7250,x=5750
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.