ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y, x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

y=\frac{1}{2}x+\frac{3}{2}+3
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. \frac{1}{2}x+\frac{3}{2} ପ୍ରାପ୍ତ କରିବାକୁ x+3 ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
y=\frac{1}{2}x+\frac{9}{2}
\frac{9}{2} ପ୍ରାପ୍ତ କରିବାକୁ \frac{3}{2} ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
\frac{1}{2}x+\frac{9}{2}-2x=10
ଅନ୍ୟ ସମୀକରଣ, y-2x=10 ରେ y ସ୍ଥାନରେ \frac{9+x}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{3}{2}x+\frac{9}{2}=10
\frac{x}{2} କୁ -2x ସହ ଯୋଡନ୍ତୁ.
-\frac{3}{2}x=\frac{11}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{9}{2} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{11}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{3}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
y=\frac{1}{2}\left(-\frac{11}{3}\right)+\frac{9}{2}
y=\frac{1}{2}x+\frac{9}{2} ରେ x ପାଇଁ -\frac{11}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y=-\frac{11}{6}+\frac{9}{2}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{1}{2} କୁ -\frac{11}{3} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=\frac{8}{3}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{11}{6} ସହିତ \frac{9}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=\frac{8}{3},x=-\frac{11}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
y=\frac{1}{2}x+\frac{3}{2}+3
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. \frac{1}{2}x+\frac{3}{2} ପ୍ରାପ୍ତ କରିବାକୁ x+3 ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
y=\frac{1}{2}x+\frac{9}{2}
\frac{9}{2} ପ୍ରାପ୍ତ କରିବାକୁ \frac{3}{2} ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
y-\frac{1}{2}x=\frac{9}{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2}x ବିୟୋଗ କରନ୍ତୁ.
y-2x=10
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
y-\frac{1}{2}x=\frac{9}{2},y-2x=10
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-\frac{1}{2}\right)}&-\frac{-\frac{1}{2}}{-2-\left(-\frac{1}{2}\right)}\\-\frac{1}{-2-\left(-\frac{1}{2}\right)}&\frac{1}{-2-\left(-\frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\times \frac{9}{2}-\frac{1}{3}\times 10\\\frac{2}{3}\times \frac{9}{2}-\frac{2}{3}\times 10\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\-\frac{11}{3}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
y=\frac{8}{3},x=-\frac{11}{3}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ y ଏବଂ x ବାହାର କରନ୍ତୁ.
y=\frac{1}{2}x+\frac{3}{2}+3
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. \frac{1}{2}x+\frac{3}{2} ପ୍ରାପ୍ତ କରିବାକୁ x+3 ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
y=\frac{1}{2}x+\frac{9}{2}
\frac{9}{2} ପ୍ରାପ୍ତ କରିବାକୁ \frac{3}{2} ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
y-\frac{1}{2}x=\frac{9}{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2}x ବିୟୋଗ କରନ୍ତୁ.
y-2x=10
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
y-\frac{1}{2}x=\frac{9}{2},y-2x=10
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
y-y-\frac{1}{2}x+2x=\frac{9}{2}-10
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା y-\frac{1}{2}x=\frac{9}{2} ଠାରୁ y-2x=10 କୁ ବିୟୋଗ କରନ୍ତୁ.
-\frac{1}{2}x+2x=\frac{9}{2}-10
y କୁ -y ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ y ଏବଂ -y ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{3}{2}x=\frac{9}{2}-10
-\frac{x}{2} କୁ 2x ସହ ଯୋଡନ୍ତୁ.
\frac{3}{2}x=-\frac{11}{2}
\frac{9}{2} କୁ -10 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{11}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{3}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
y-2\left(-\frac{11}{3}\right)=10
y-2x=10 ରେ x ପାଇଁ -\frac{11}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y+\frac{22}{3}=10
-2 କୁ -\frac{11}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{8}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{22}{3} ବିୟୋଗ କରନ୍ତୁ.
y=\frac{8}{3},x=-\frac{11}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.