y, x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{44}{3} = 14\frac{2}{3} \approx 14.666666667
y = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
y=-\frac{1}{2}x+6
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଋଣାତ୍ମକ ଚିହ୍ନକୁ କାଢିଦେବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-1}{2} କୁ -\frac{1}{2} ଭାବେ ପୁଣି ଲେଖାଯାଇପାରିବ.
-\frac{1}{2}x+6-\frac{1}{4}x=-5
ଅନ୍ୟ ସମୀକରଣ, y-\frac{1}{4}x=-5 ରେ y ସ୍ଥାନରେ -\frac{x}{2}+6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{3}{4}x+6=-5
-\frac{x}{2} କୁ -\frac{x}{4} ସହ ଯୋଡନ୍ତୁ.
-\frac{3}{4}x=-11
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{44}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{3}{4} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
y=-\frac{1}{2}\times \frac{44}{3}+6
y=-\frac{1}{2}x+6 ରେ x ପାଇଁ \frac{44}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y=-\frac{22}{3}+6
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{1}{2} କୁ \frac{44}{3} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=-\frac{4}{3}
6 କୁ -\frac{22}{3} ସହ ଯୋଡନ୍ତୁ.
y=-\frac{4}{3},x=\frac{44}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
y=-\frac{1}{2}x+6
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଋଣାତ୍ମକ ଚିହ୍ନକୁ କାଢିଦେବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-1}{2} କୁ -\frac{1}{2} ଭାବେ ପୁଣି ଲେଖାଯାଇପାରିବ.
y+\frac{1}{2}x=6
ଉଭୟ ପାର୍ଶ୍ଵକୁ \frac{1}{2}x ଯୋଡନ୍ତୁ.
y-\frac{1}{4}x=-5
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{4}x ବିୟୋଗ କରନ୍ତୁ.
y+\frac{1}{2}x=6,y-\frac{1}{4}x=-5
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-5\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}6\\-5\end{matrix}\right)
\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{4}\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}6\\-5\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}6\\-5\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{4}}{-\frac{1}{4}-\frac{1}{2}}&-\frac{\frac{1}{2}}{-\frac{1}{4}-\frac{1}{2}}\\-\frac{1}{-\frac{1}{4}-\frac{1}{2}}&\frac{1}{-\frac{1}{4}-\frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}6\\-5\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{4}{3}&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}6\\-5\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6+\frac{2}{3}\left(-5\right)\\\frac{4}{3}\times 6-\frac{4}{3}\left(-5\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}\\\frac{44}{3}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
y=-\frac{4}{3},x=\frac{44}{3}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ y ଏବଂ x ବାହାର କରନ୍ତୁ.
y=-\frac{1}{2}x+6
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଋଣାତ୍ମକ ଚିହ୍ନକୁ କାଢିଦେବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-1}{2} କୁ -\frac{1}{2} ଭାବେ ପୁଣି ଲେଖାଯାଇପାରିବ.
y+\frac{1}{2}x=6
ଉଭୟ ପାର୍ଶ୍ଵକୁ \frac{1}{2}x ଯୋଡନ୍ତୁ.
y-\frac{1}{4}x=-5
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{4}x ବିୟୋଗ କରନ୍ତୁ.
y+\frac{1}{2}x=6,y-\frac{1}{4}x=-5
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
y-y+\frac{1}{2}x+\frac{1}{4}x=6+5
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା y+\frac{1}{2}x=6 ଠାରୁ y-\frac{1}{4}x=-5 କୁ ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{2}x+\frac{1}{4}x=6+5
y କୁ -y ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ y ଏବଂ -y ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{3}{4}x=6+5
\frac{x}{2} କୁ \frac{x}{4} ସହ ଯୋଡନ୍ତୁ.
\frac{3}{4}x=11
6 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=\frac{44}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{3}{4} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
y-\frac{1}{4}\times \frac{44}{3}=-5
y-\frac{1}{4}x=-5 ରେ x ପାଇଁ \frac{44}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y-\frac{11}{3}=-5
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{1}{4} କୁ \frac{44}{3} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=-\frac{4}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{11}{3} ଯୋଡନ୍ତୁ.
y=-\frac{4}{3},x=\frac{44}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}