p, b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
p=55
b=75
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
p+b=130,p+1.09b=136.75
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
p+b=130
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ p କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା p ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
p=-b+130
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ b ବିୟୋଗ କରନ୍ତୁ.
-b+130+1.09b=136.75
ଅନ୍ୟ ସମୀକରଣ, p+1.09b=136.75 ରେ p ସ୍ଥାନରେ -b+130 ପ୍ରତିବଦଳ କରନ୍ତୁ.
0.09b+130=136.75
-b କୁ \frac{109b}{100} ସହ ଯୋଡନ୍ତୁ.
0.09b=6.75
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 130 ବିୟୋଗ କରନ୍ତୁ.
b=75
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 0.09 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
p=-75+130
p=-b+130 ରେ b ପାଇଁ 75 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ p ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
p=55
130 କୁ -75 ସହ ଯୋଡନ୍ତୁ.
p=55,b=75
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
p+b=130,p+1.09b=136.75
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}130\\136.75\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1.09}{1.09-1}&-\frac{1}{1.09-1}\\-\frac{1}{1.09-1}&\frac{1}{1.09-1}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}&-\frac{100}{9}\\-\frac{100}{9}&\frac{100}{9}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}\times 130-\frac{100}{9}\times 136.75\\-\frac{100}{9}\times 130+\frac{100}{9}\times 136.75\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}55\\75\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
p=55,b=75
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ p ଏବଂ b ବାହାର କରନ୍ତୁ.
p+b=130,p+1.09b=136.75
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
p-p+b-1.09b=130-136.75
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା p+b=130 ଠାରୁ p+1.09b=136.75 କୁ ବିୟୋଗ କରନ୍ତୁ.
b-1.09b=130-136.75
p କୁ -p ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ p ଏବଂ -p ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-0.09b=130-136.75
b କୁ -\frac{109b}{100} ସହ ଯୋଡନ୍ତୁ.
-0.09b=-6.75
130 କୁ -136.75 ସହ ଯୋଡନ୍ତୁ.
b=75
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -0.09 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
p+1.09\times 75=136.75
p+1.09b=136.75 ରେ b ପାଇଁ 75 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ p ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
p+81.75=136.75
1.09 କୁ 75 ଥର ଗୁଣନ କରନ୍ତୁ.
p=55
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 81.75 ବିୟୋଗ କରନ୍ତୁ.
p=55,b=75
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}