ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
m, n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

m-3n=1,m+3n=5
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
m-3n=1
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ m କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା m ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
m=3n+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3n ଯୋଡନ୍ତୁ.
3n+1+3n=5
ଅନ୍ୟ ସମୀକରଣ, m+3n=5 ରେ m ସ୍ଥାନରେ 3n+1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
6n+1=5
3n କୁ 3n ସହ ଯୋଡନ୍ତୁ.
6n=4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
n=\frac{2}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=3\times \frac{2}{3}+1
m=3n+1 ରେ n ପାଇଁ \frac{2}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ m ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
m=2+1
3 କୁ \frac{2}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
m=3
1 କୁ 2 ସହ ଯୋଡନ୍ତୁ.
m=3,n=\frac{2}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
m-3n=1,m+3n=5
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\right)}&-\frac{-3}{3-\left(-3\right)}\\-\frac{1}{3-\left(-3\right)}&\frac{1}{3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 5\\-\frac{1}{6}+\frac{1}{6}\times 5\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}3\\\frac{2}{3}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
m=3,n=\frac{2}{3}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ m ଏବଂ n ବାହାର କରନ୍ତୁ.
m-3n=1,m+3n=5
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
m-m-3n-3n=1-5
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା m-3n=1 ଠାରୁ m+3n=5 କୁ ବିୟୋଗ କରନ୍ତୁ.
-3n-3n=1-5
m କୁ -m ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ m ଏବଂ -m ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-6n=1-5
-3n କୁ -3n ସହ ଯୋଡନ୍ତୁ.
-6n=-4
1 କୁ -5 ସହ ଯୋଡନ୍ତୁ.
n=\frac{2}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m+3\times \frac{2}{3}=5
m+3n=5 ରେ n ପାଇଁ \frac{2}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ m ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
m+2=5
3 କୁ \frac{2}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
m=3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
m=3,n=\frac{2}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.