ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
6x-\frac{1}{3}y=27
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
6x=\frac{1}{3}y+27
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{y}{3} ଯୋଡନ୍ତୁ.
x=\frac{1}{6}\left(\frac{1}{3}y+27\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{1}{18}y+\frac{9}{2}
\frac{1}{6} କୁ \frac{y}{3}+27 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{4}{5}\left(\frac{1}{18}y+\frac{9}{2}\right)+\frac{1}{4}y=\frac{25}{4}
ଅନ୍ୟ ସମୀକରଣ, \frac{4}{5}x+\frac{1}{4}y=\frac{25}{4} ରେ x ସ୍ଥାନରେ \frac{y}{18}+\frac{9}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{2}{45}y+\frac{18}{5}+\frac{1}{4}y=\frac{25}{4}
\frac{4}{5} କୁ \frac{y}{18}+\frac{9}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{53}{180}y+\frac{18}{5}=\frac{25}{4}
\frac{2y}{45} କୁ \frac{y}{4} ସହ ଯୋଡନ୍ତୁ.
\frac{53}{180}y=\frac{53}{20}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{18}{5} ବିୟୋଗ କରନ୍ତୁ.
y=9
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{53}{180} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=\frac{1}{18}\times 9+\frac{9}{2}
x=\frac{1}{18}y+\frac{9}{2} ରେ y ପାଇଁ 9 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{1+9}{2}
\frac{1}{18} କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=5
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{2} ସହିତ \frac{9}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=5,y=9
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&-\frac{-\frac{1}{3}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\\-\frac{\frac{4}{5}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&\frac{6}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}&\frac{10}{53}\\-\frac{24}{53}&\frac{180}{53}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}\times 27+\frac{10}{53}\times \frac{25}{4}\\-\frac{24}{53}\times 27+\frac{180}{53}\times \frac{25}{4}\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=5,y=9
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
\frac{4}{5}\times 6x+\frac{4}{5}\left(-\frac{1}{3}\right)y=\frac{4}{5}\times 27,6\times \frac{4}{5}x+6\times \frac{1}{4}y=6\times \frac{25}{4}
6x ଏବଂ \frac{4x}{5} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ \frac{4}{5} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{24}{5}x-\frac{4}{15}y=\frac{108}{5},\frac{24}{5}x+\frac{3}{2}y=\frac{75}{2}
ସରଳୀକୃତ କରିବା.
\frac{24}{5}x-\frac{24}{5}x-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{24}{5}x-\frac{4}{15}y=\frac{108}{5} ଠାରୁ \frac{24}{5}x+\frac{3}{2}y=\frac{75}{2} କୁ ବିୟୋଗ କରନ୍ତୁ.
-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
\frac{24x}{5} କୁ -\frac{24x}{5} ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ \frac{24x}{5} ଏବଂ -\frac{24x}{5} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-\frac{53}{30}y=\frac{108}{5}-\frac{75}{2}
-\frac{4y}{15} କୁ -\frac{3y}{2} ସହ ଯୋଡନ୍ତୁ.
-\frac{53}{30}y=-\frac{159}{10}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{75}{2} ସହିତ \frac{108}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=9
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{53}{30} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
\frac{4}{5}x+\frac{1}{4}\times 9=\frac{25}{4}
\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4} ରେ y ପାଇଁ 9 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
\frac{4}{5}x+\frac{9}{4}=\frac{25}{4}
\frac{1}{4} କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{4}{5}x=4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{9}{4} ବିୟୋଗ କରନ୍ତୁ.
x=5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{4}{5} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=5,y=9
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.