ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}-13x-10=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 3\left(-10\right)}}{2\times 3}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 3, b ପାଇଁ -13, ଏବଂ c ପାଇଁ -10 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{13±17}{6}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=5 x=-\frac{2}{3}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{13±17}{6} ସମାଧାନ କରନ୍ତୁ.
3\left(x-5\right)\left(x+\frac{2}{3}\right)<0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-5>0 x+\frac{2}{3}<0
ଉତ୍ପାଦ ଋଣାତ୍ମକ ହେବା ପାଇଁ, x-5 ଏବଂ x+\frac{2}{3} ବିପରୀତ ଚିହ୍ନର ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x-5 ଧନାତ୍ମକ ଏବଂ x+\frac{2}{3} ଋଣାତ୍ମକ ହୋଇଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x\in \emptyset
ଏହା କୌଣସି x ପାଇଁ ମିଥ୍ୟା ଅଟେ.
x+\frac{2}{3}>0 x-5<0
ଯେତେବେଳେ x+\frac{2}{3} ଧନାତ୍ମକ ଏବଂ x-5 ଋଣାତ୍ମକ ହୋଇଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x\in \left(-\frac{2}{3},5\right)
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x\in \left(-\frac{2}{3},5\right).
x\in \left(-\frac{2}{3},5\right)
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.