y, x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-3
y=5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2y-5+2x=-6+y
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
2y-5+2x-y=-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
y-5+2x=-6
y ପାଇବାକୁ 2y ଏବଂ -y ସମ୍ମେଳନ କରନ୍ତୁ.
y+2x=-6+5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
y+2x=-1
-1 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
2x-2-3\left(1-2y\right)=19
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-2-3+6y=19
-3 କୁ 1-2y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-5+6y=19
-5 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
2x+6y=19+5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
2x+6y=24
24 ପ୍ରାପ୍ତ କରିବାକୁ 19 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
y+2x=-1,6y+2x=24
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
y+2x=-1
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ y କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା y ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
y=-2x-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
6\left(-2x-1\right)+2x=24
ଅନ୍ୟ ସମୀକରଣ, 6y+2x=24 ରେ y ସ୍ଥାନରେ -2x-1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-12x-6+2x=24
6 କୁ -2x-1 ଥର ଗୁଣନ କରନ୍ତୁ.
-10x-6=24
-12x କୁ 2x ସହ ଯୋଡନ୍ତୁ.
-10x=30
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 6 ଯୋଡନ୍ତୁ.
x=-3
ଉଭୟ ପାର୍ଶ୍ୱକୁ -10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-2\left(-3\right)-1
y=-2x-1 ରେ x ପାଇଁ -3 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y=6-1
-2 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
y=5
-1 କୁ 6 ସହ ଯୋଡନ୍ତୁ.
y=5,x=-3
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
2y-5+2x=-6+y
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
2y-5+2x-y=-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
y-5+2x=-6
y ପାଇବାକୁ 2y ଏବଂ -y ସମ୍ମେଳନ କରନ୍ତୁ.
y+2x=-6+5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
y+2x=-1
-1 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
2x-2-3\left(1-2y\right)=19
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-2-3+6y=19
-3 କୁ 1-2y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-5+6y=19
-5 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
2x+6y=19+5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
2x+6y=24
24 ପ୍ରାପ୍ତ କରିବାକୁ 19 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
y+2x=-1,6y+2x=24
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&2\\6&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\24\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&2\\6&2\end{matrix}\right))\left(\begin{matrix}1&2\\6&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&2\end{matrix}\right))\left(\begin{matrix}-1\\24\end{matrix}\right)
\left(\begin{matrix}1&2\\6&2\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&2\end{matrix}\right))\left(\begin{matrix}-1\\24\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&2\end{matrix}\right))\left(\begin{matrix}-1\\24\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 6}&-\frac{2}{2-2\times 6}\\-\frac{6}{2-2\times 6}&\frac{1}{2-2\times 6}\end{matrix}\right)\left(\begin{matrix}-1\\24\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{3}{5}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-1\\24\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-1\right)+\frac{1}{5}\times 24\\\frac{3}{5}\left(-1\right)-\frac{1}{10}\times 24\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
y=5,x=-3
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ y ଏବଂ x ବାହାର କରନ୍ତୁ.
2y-5+2x=-6+y
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
2y-5+2x-y=-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
y-5+2x=-6
y ପାଇବାକୁ 2y ଏବଂ -y ସମ୍ମେଳନ କରନ୍ତୁ.
y+2x=-6+5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
y+2x=-1
-1 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
2x-2-3\left(1-2y\right)=19
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-2-3+6y=19
-3 କୁ 1-2y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-5+6y=19
-5 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
2x+6y=19+5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
2x+6y=24
24 ପ୍ରାପ୍ତ କରିବାକୁ 19 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
y+2x=-1,6y+2x=24
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
y-6y+2x-2x=-1-24
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା y+2x=-1 ଠାରୁ 6y+2x=24 କୁ ବିୟୋଗ କରନ୍ତୁ.
y-6y=-1-24
2x କୁ -2x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ 2x ଏବଂ -2x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-5y=-1-24
y କୁ -6y ସହ ଯୋଡନ୍ତୁ.
-5y=-25
-1 କୁ -24 ସହ ଯୋଡନ୍ତୁ.
y=5
ଉଭୟ ପାର୍ଶ୍ୱକୁ -5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
6\times 5+2x=24
6y+2x=24 ରେ y ପାଇଁ 5 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
30+2x=24
6 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
2x=-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ.
x=-3
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=5,x=-3
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}