ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

10x+4y=-12,-9x-5y=1
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
10x+4y=-12
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
10x=-4y-12
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4y ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{10}\left(-4y-12\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{2}{5}y-\frac{6}{5}
\frac{1}{10} କୁ -4y-12 ଥର ଗୁଣନ କରନ୍ତୁ.
-9\left(-\frac{2}{5}y-\frac{6}{5}\right)-5y=1
ଅନ୍ୟ ସମୀକରଣ, -9x-5y=1 ରେ x ସ୍ଥାନରେ \frac{-2y-6}{5} ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{18}{5}y+\frac{54}{5}-5y=1
-9 କୁ \frac{-2y-6}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
-\frac{7}{5}y+\frac{54}{5}=1
\frac{18y}{5} କୁ -5y ସହ ଯୋଡନ୍ତୁ.
-\frac{7}{5}y=-\frac{49}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{54}{5} ବିୟୋଗ କରନ୍ତୁ.
y=7
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{7}{5} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=-\frac{2}{5}\times 7-\frac{6}{5}
x=-\frac{2}{5}y-\frac{6}{5} ରେ y ପାଇଁ 7 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{-14-6}{5}
-\frac{2}{5} କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-4
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{14}{5} ସହିତ -\frac{6}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-4,y=7
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
10x+4y=-12,-9x-5y=1
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\1\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{10\left(-5\right)-4\left(-9\right)}&-\frac{4}{10\left(-5\right)-4\left(-9\right)}\\-\frac{-9}{10\left(-5\right)-4\left(-9\right)}&\frac{10}{10\left(-5\right)-4\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&\frac{2}{7}\\-\frac{9}{14}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-12\right)+\frac{2}{7}\\-\frac{9}{14}\left(-12\right)-\frac{5}{7}\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=-4,y=7
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
10x+4y=-12,-9x-5y=1
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
-9\times 10x-9\times 4y=-9\left(-12\right),10\left(-9\right)x+10\left(-5\right)y=10
10x ଏବଂ -9x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ -9 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-90x-36y=108,-90x-50y=10
ସରଳୀକୃତ କରିବା.
-90x+90x-36y+50y=108-10
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -90x-36y=108 ଠାରୁ -90x-50y=10 କୁ ବିୟୋଗ କରନ୍ତୁ.
-36y+50y=108-10
-90x କୁ 90x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -90x ଏବଂ 90x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
14y=108-10
-36y କୁ 50y ସହ ଯୋଡନ୍ତୁ.
14y=98
108 କୁ -10 ସହ ଯୋଡନ୍ତୁ.
y=7
ଉଭୟ ପାର୍ଶ୍ୱକୁ 14 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-9x-5\times 7=1
-9x-5y=1 ରେ y ପାଇଁ 7 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
-9x-35=1
-5 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
-9x=36
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 35 ଯୋଡନ୍ତୁ.
x=-4
ଉଭୟ ପାର୍ଶ୍ୱକୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-4,y=7
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.