x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}x=-\frac{gy_{1}-fx_{1}}{y_{1}+f}\text{, }&y_{1}\neq -f\\x\in \mathrm{C}\text{, }&\left(y_{1}=0\text{ and }f=0\right)\text{ or }\left(x_{1}=-g\text{ and }y_{1}=-f\right)\end{matrix}\right.
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}x=-\frac{gy_{1}-fx_{1}}{y_{1}+f}\text{, }&y_{1}\neq -f\\x\in \mathrm{R}\text{, }&\left(y_{1}=0\text{ and }f=0\right)\text{ or }\left(x_{1}=-g\text{ and }y_{1}=-f\right)\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
-y_{1} କୁ x_{1}+g ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
x-x_{1} କୁ y_{1}+f ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
ଉଭୟ ପାର୍ଶ୍ଵକୁ x_{1}y_{1} ଯୋଡନ୍ତୁ.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
ଉଭୟ ପାର୍ଶ୍ଵକୁ x_{1}f ଯୋଡନ୍ତୁ.
xy_{1}+xf=-y_{1}g+x_{1}f
0 ପାଇବାକୁ -y_{1}x_{1} ଏବଂ x_{1}y_{1} ସମ୍ମେଳନ କରନ୍ତୁ.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
x ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
ଉଭୟ ପାର୍ଶ୍ୱକୁ y_{1}+f ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
y_{1}+f ଦ୍ୱାରା ବିଭାଜନ କରିବା y_{1}+f ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
-y_{1} କୁ x_{1}+g ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
x-x_{1} କୁ y_{1}+f ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
ଉଭୟ ପାର୍ଶ୍ଵକୁ x_{1}y_{1} ଯୋଡନ୍ତୁ.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
ଉଭୟ ପାର୍ଶ୍ଵକୁ x_{1}f ଯୋଡନ୍ତୁ.
xy_{1}+xf=-y_{1}g+x_{1}f
0 ପାଇବାକୁ -y_{1}x_{1} ଏବଂ x_{1}y_{1} ସମ୍ମେଳନ କରନ୍ତୁ.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
x ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
ଉଭୟ ପାର୍ଶ୍ୱକୁ y_{1}+f ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
y_{1}+f ଦ୍ୱାରା ବିଭାଜନ କରିବା y_{1}+f ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}