x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-1
y=-1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-6x+5y=1,6x+4y=-10
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
-6x+5y=1
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
-6x=-5y+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5y ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{1}{6}\left(-5y+1\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{6}y-\frac{1}{6}
-\frac{1}{6} କୁ -5y+1 ଥର ଗୁଣନ କରନ୍ତୁ.
6\left(\frac{5}{6}y-\frac{1}{6}\right)+4y=-10
ଅନ୍ୟ ସମୀକରଣ, 6x+4y=-10 ରେ x ସ୍ଥାନରେ \frac{5y-1}{6} ପ୍ରତିବଦଳ କରନ୍ତୁ.
5y-1+4y=-10
6 କୁ \frac{5y-1}{6} ଥର ଗୁଣନ କରନ୍ତୁ.
9y-1=-10
5y କୁ 4y ସହ ଯୋଡନ୍ତୁ.
9y=-9
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
y=-1
ଉଭୟ ପାର୍ଶ୍ୱକୁ 9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{6}\left(-1\right)-\frac{1}{6}
x=\frac{5}{6}y-\frac{1}{6} ରେ y ପାଇଁ -1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{-5-1}{6}
\frac{5}{6} କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-1
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{5}{6} ସହିତ -\frac{1}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-1,y=-1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
-6x+5y=1,6x+4y=-10
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}-6&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}-6&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
\left(\begin{matrix}-6&5\\6&4\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-6\times 4-5\times 6}&-\frac{5}{-6\times 4-5\times 6}\\-\frac{6}{-6\times 4-5\times 6}&-\frac{6}{-6\times 4-5\times 6}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{27}&\frac{5}{54}\\\frac{1}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{27}+\frac{5}{54}\left(-10\right)\\\frac{1}{9}+\frac{1}{9}\left(-10\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=-1,y=-1
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
-6x+5y=1,6x+4y=-10
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
6\left(-6\right)x+6\times 5y=6,-6\times 6x-6\times 4y=-6\left(-10\right)
-6x ଏବଂ 6x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ -6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-36x+30y=6,-36x-24y=60
ସରଳୀକୃତ କରିବା.
-36x+36x+30y+24y=6-60
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -36x+30y=6 ଠାରୁ -36x-24y=60 କୁ ବିୟୋଗ କରନ୍ତୁ.
30y+24y=6-60
-36x କୁ 36x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -36x ଏବଂ 36x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
54y=6-60
30y କୁ 24y ସହ ଯୋଡନ୍ତୁ.
54y=-54
6 କୁ -60 ସହ ଯୋଡନ୍ତୁ.
y=-1
ଉଭୟ ପାର୍ଶ୍ୱକୁ 54 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
6x+4\left(-1\right)=-10
6x+4y=-10 ରେ y ପାଇଁ -1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
6x-4=-10
4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
6x=-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ଯୋଡନ୍ତୁ.
x=-1
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-1,y=-1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}