x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=4
y=0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5},\frac{1}{2}x+\frac{1}{8}y=2
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5}
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
\frac{1}{5}x=-\frac{1}{4}y+\frac{4}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{y}{4} ବିୟୋଗ କରନ୍ତୁ.
x=5\left(-\frac{1}{4}y+\frac{4}{5}\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=-\frac{5}{4}y+4
5 କୁ -\frac{y}{4}+\frac{4}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}\left(-\frac{5}{4}y+4\right)+\frac{1}{8}y=2
ଅନ୍ୟ ସମୀକରଣ, \frac{1}{2}x+\frac{1}{8}y=2 ରେ x ସ୍ଥାନରେ -\frac{5y}{4}+4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{5}{8}y+2+\frac{1}{8}y=2
\frac{1}{2} କୁ -\frac{5y}{4}+4 ଥର ଗୁଣନ କରନ୍ତୁ.
-\frac{1}{2}y+2=2
-\frac{5y}{8} କୁ \frac{y}{8} ସହ ଯୋଡନ୍ତୁ.
-\frac{1}{2}y=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
y=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=4
x=-\frac{5}{4}y+4 ରେ y ପାଇଁ 0 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=4,y=0
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5},\frac{1}{2}x+\frac{1}{8}y=2
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{8}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}&-\frac{\frac{1}{4}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}&\frac{\frac{1}{5}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}&\frac{5}{2}\\5&-2\end{matrix}\right)\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}\times \frac{4}{5}+\frac{5}{2}\times 2\\5\times \frac{4}{5}-2\times 2\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=4,y=0
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5},\frac{1}{2}x+\frac{1}{8}y=2
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
\frac{1}{2}\times \frac{1}{5}x+\frac{1}{2}\times \frac{1}{4}y=\frac{1}{2}\times \frac{4}{5},\frac{1}{5}\times \frac{1}{2}x+\frac{1}{5}\times \frac{1}{8}y=\frac{1}{5}\times 2
\frac{x}{5} ଏବଂ \frac{x}{2} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ \frac{1}{2} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ \frac{1}{5} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{1}{10}x+\frac{1}{8}y=\frac{2}{5},\frac{1}{10}x+\frac{1}{40}y=\frac{2}{5}
ସରଳୀକୃତ କରିବା.
\frac{1}{10}x-\frac{1}{10}x+\frac{1}{8}y-\frac{1}{40}y=\frac{2-2}{5}
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{1}{10}x+\frac{1}{8}y=\frac{2}{5} ଠାରୁ \frac{1}{10}x+\frac{1}{40}y=\frac{2}{5} କୁ ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{8}y-\frac{1}{40}y=\frac{2-2}{5}
\frac{x}{10} କୁ -\frac{x}{10} ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ \frac{x}{10} ଏବଂ -\frac{x}{10} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{1}{10}y=\frac{2-2}{5}
\frac{y}{8} କୁ -\frac{y}{40} ସହ ଯୋଡନ୍ତୁ.
\frac{1}{10}y=0
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{2}{5} ସହିତ \frac{2}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x=2
\frac{1}{2}x+\frac{1}{8}y=2 ରେ y ପାଇଁ 0 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=4
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=4,y=0
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}