ମୂଲ୍ୟାୟନ କରିବା
\frac{a^{2}}{2}-b
ପ୍ରସାରଣ
\frac{a^{2}}{2}-b
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\left(a+b\right)\left(a-b\right)}{a+b}\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
\frac{a^{2}-b^{2}}{a+b} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
ଉଭୟ ଲବ ଓ ହରରେ a+b ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{\left(a^{2}-2ab+b^{2}\right)\left(2b+2\right)}-b
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}} କୁ \frac{a^{2}-ab}{2b+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-b
ଗୁଣନିୟକ \left(a^{2}-2ab+b^{2}\right)\left(2b+2\right).
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-\frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. b କୁ \frac{2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
ଯେହେତୁ \frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}} ଏବଂ \frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}}{2\left(b+1\right)\left(a-b\right)^{2}}
\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(b+1\right)\left(a-b\right)^{2}\left(a^{2}-2b\right)}{2\left(b+1\right)\left(a-b\right)^{2}}
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{a^{2}-2b}{2}
ଉଭୟ ଲବ ଓ ହରରେ \left(b+1\right)\left(a-b\right)^{2} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\left(a+b\right)\left(a-b\right)}{a+b}\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
\frac{a^{2}-b^{2}}{a+b} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
ଉଭୟ ଲବ ଓ ହରରେ a+b ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{\left(a^{2}-2ab+b^{2}\right)\left(2b+2\right)}-b
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}} କୁ \frac{a^{2}-ab}{2b+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-b
ଗୁଣନିୟକ \left(a^{2}-2ab+b^{2}\right)\left(2b+2\right).
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-\frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. b କୁ \frac{2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
ଯେହେତୁ \frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}} ଏବଂ \frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}}{2\left(b+1\right)\left(a-b\right)^{2}}
\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(b+1\right)\left(a-b\right)^{2}\left(a^{2}-2b\right)}{2\left(b+1\right)\left(a-b\right)^{2}}
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{a^{2}-2b}{2}
ଉଭୟ ଲବ ଓ ହରରେ \left(b+1\right)\left(a-b\right)^{2} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}