f, x, g, h, j ପାଇଁ ସମାଧାନ କରନ୍ତୁ
j=i
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
h=i
ଚତୁର୍ଥ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
i=g
ତୃତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
g=i
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
i=f\left(-\frac{1}{5}\right)
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
-5i=f
ଉଭୟ ପାର୍ଶ୍ୱକୁ -5, -\frac{1}{5} ର ଆନୁପାତିକ ସଂଖ୍ୟା ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
f=-5i
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-5ix=-4x-4
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
-5ix+4x=-4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4x ଯୋଡନ୍ତୁ.
\left(4-5i\right)x=-4
\left(4-5i\right)x ପାଇବାକୁ -5ix ଏବଂ 4x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-4}{4-5i}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4-5i ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
\frac{-4}{4-5i} ର ହରର ଜଟିଳ ମିଶ୍ରଣ ଦ୍ୱାରା ଉଭୟ ଲବ ଓ ହରକୁ ଗୁଣନ କରନ୍ତୁ, 4+5i.
x=\frac{-16-20i}{41}
\frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
x=-\frac{16}{41}-\frac{20}{41}i
-\frac{16}{41}-\frac{20}{41}i ପ୍ରାପ୍ତ କରିବାକୁ -16-20i କୁ 41 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
f=-5i x=-\frac{16}{41}-\frac{20}{41}i g=i h=i j=i
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}