n, m, o, p, q, r ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
r\in \mathrm{C}\text{, }n=\frac{-\sqrt{9r^{2}-300r-1700}-3r-20}{42}\text{, }m=\frac{-\sqrt{9r^{2}-300r-1700}+3r-20}{30}\text{, }o=r\text{, }p=r\text{, }q=r
r\in \mathrm{C}\text{, }n=\frac{5\left(\sqrt{9r^{2}-300r-1700}+3r+10\right)}{3\left(-\sqrt{9r^{2}-300r-1700}-3r+50\right)}\text{, }m=\frac{\sqrt{9r^{2}-300r-1700}+3r-20}{30}\text{, }o=r\text{, }p=r\text{, }q=r
n, m, o, p, q, r ପାଇଁ ସମାଧାନ କରନ୍ତୁ
r\in (-\infty,\frac{10(5-\sqrt{42})}{3}]\cup [\frac{10(\sqrt{42}+5)}{3},\infty)\text{, }n=\frac{-\sqrt{9r^{2}-300r-1700}-3r-20}{42}\text{, }m=\frac{-\sqrt{9r^{2}-300r-1700}+3r-20}{30}\text{, }o=r\text{, }p=r\text{, }q=r\text{; }r\in (-\infty,\frac{10(5-\sqrt{42})}{3}]\cup [\frac{10(\sqrt{42}+5)}{3},\infty)\text{, }n=\frac{5(\sqrt{9r^{2}-300r-1700}+3r+10)}{3(-\sqrt{9r^{2}-300r-1700}-3r+50)}\text{, }m=\frac{\sqrt{9r^{2}-300r-1700}+3r-20}{30}\text{, }o=r\text{, }p=r\text{, }q=r
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}