c, x, y, z, a, b, d ପାଇଁ ସମାଧାନ କରନ୍ତୁ
d=24
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{1}{3}y=8
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 8 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
y=8\times 3
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3, \frac{1}{3} ର ଆନୁପାତିକ ସଂଖ୍ୟା ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
y=24
24 ପ୍ରାପ୍ତ କରିବାକୁ 8 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
x=8\times 3
ତୃତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱକୁ 3, \frac{1}{3} ର ଆନୁପାତିକ ସଂଖ୍ୟା ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=24
24 ପ୍ରାପ୍ତ କରିବାକୁ 8 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
z=24
ଚତୁର୍ଥ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
a=24
ପଞ୍ଚମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
b=24
ସମୀକରଣ (6) ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
d=24
ସମୀକରଣ (7) ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
c\times \frac{1}{3}\times 24+8=16
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
c\times 8+8=16
8 ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{3} ଏବଂ 24 ଗୁଣନ କରନ୍ତୁ.
c\times 8=16-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
c\times 8=8
8 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
c=\frac{8}{8}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
c=1
1 ପ୍ରାପ୍ତ କରିବାକୁ 8 କୁ 8 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
c=1 x=24 y=24 z=24 a=24 b=24 d=24
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}