r, s, t, u, v ପାଇଁ ସମାଧାନ କରନ୍ତୁ
v=111
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2\left(r-6\right)=r+3
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2,4 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2r-12=r+3
2 କୁ r-6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2r-12-r=3
ଉଭୟ ପାର୍ଶ୍ୱରୁ r ବିୟୋଗ କରନ୍ତୁ.
r-12=3
r ପାଇବାକୁ 2r ଏବଂ -r ସମ୍ମେଳନ କରନ୍ତୁ.
r=3+12
ଉଭୟ ପାର୍ଶ୍ଵକୁ 12 ଯୋଡନ୍ତୁ.
r=15
15 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 12 ଯୋଗ କରନ୍ତୁ.
s=7\times 15+6
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
s=105+6
105 ପ୍ରାପ୍ତ କରିବାକୁ 7 ଏବଂ 15 ଗୁଣନ କରନ୍ତୁ.
s=111
111 ପ୍ରାପ୍ତ କରିବାକୁ 105 ଏବଂ 6 ଯୋଗ କରନ୍ତୁ.
t=111
ତୃତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
u=111
ଚତୁର୍ଥ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
v=111
ପଞ୍ଚମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଚଳରାଶିଗୁଡିକର ଜ୍ଞାତ ମୂଲ୍ୟଗୁଡିକୁ ସମୀକରଣରେ ସନ୍ନିବେଶ କରନ୍ତୁ.
r=15 s=111 t=111 u=111 v=111
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}