y, x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-2
y=-2
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
y-2x=2
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
y-2x=2,-y+4x=-6
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
y-2x=2
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ y କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା y ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
y=2x+2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2x ଯୋଡନ୍ତୁ.
-\left(2x+2\right)+4x=-6
ଅନ୍ୟ ସମୀକରଣ, -y+4x=-6 ରେ y ସ୍ଥାନରେ 2+2x ପ୍ରତିବଦଳ କରନ୍ତୁ.
-2x-2+4x=-6
-1 କୁ 2+2x ଥର ଗୁଣନ କରନ୍ତୁ.
2x-2=-6
-2x କୁ 4x ସହ ଯୋଡନ୍ତୁ.
2x=-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
x=-2
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=2\left(-2\right)+2
y=2x+2 ରେ x ପାଇଁ -2 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y=-4+2
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
y=-2
2 କୁ -4 ସହ ଯୋଡନ୍ତୁ.
y=-2,x=-2
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
y-2x=2
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
y-2x=2,-y+4x=-6
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&-2\\-1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-6\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&-2\\-1&4\end{matrix}\right))\left(\begin{matrix}1&-2\\-1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&4\end{matrix}\right))\left(\begin{matrix}2\\-6\end{matrix}\right)
\left(\begin{matrix}1&-2\\-1&4\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&4\end{matrix}\right))\left(\begin{matrix}2\\-6\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&4\end{matrix}\right))\left(\begin{matrix}2\\-6\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\left(-1\right)\right)}&-\frac{-2}{4-\left(-2\left(-1\right)\right)}\\-\frac{-1}{4-\left(-2\left(-1\right)\right)}&\frac{1}{4-\left(-2\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\-6\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2&1\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\-6\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\times 2-6\\\frac{1}{2}\times 2+\frac{1}{2}\left(-6\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\-2\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
y=-2,x=-2
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ y ଏବଂ x ବାହାର କରନ୍ତୁ.
y-2x=2
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
y-2x=2,-y+4x=-6
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
-y-\left(-2x\right)=-2,-y+4x=-6
y ଏବଂ -y କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ -1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ 1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-y+2x=-2,-y+4x=-6
ସରଳୀକୃତ କରିବା.
-y+y+2x-4x=-2+6
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -y+2x=-2 ଠାରୁ -y+4x=-6 କୁ ବିୟୋଗ କରନ୍ତୁ.
2x-4x=-2+6
-y କୁ y ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -y ଏବଂ y ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-2x=-2+6
2x କୁ -4x ସହ ଯୋଡନ୍ତୁ.
-2x=4
-2 କୁ 6 ସହ ଯୋଡନ୍ତୁ.
x=-2
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-y+4\left(-2\right)=-6
-y+4x=-6 ରେ x ପାଇଁ -2 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
-y-8=-6
4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
-y=2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 8 ଯୋଡନ୍ତୁ.
y=-2
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-2,x=-2
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}