ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3.9x+y=359.7,-1.8x-y=-131
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
3.9x+y=359.7
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
3.9x=-y+359.7
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
x=\frac{10}{39}\left(-y+359.7\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3.9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=-\frac{10}{39}y+\frac{1199}{13}
\frac{10}{39} କୁ -y+359.7 ଥର ଗୁଣନ କରନ୍ତୁ.
-1.8\left(-\frac{10}{39}y+\frac{1199}{13}\right)-y=-131
ଅନ୍ୟ ସମୀକରଣ, -1.8x-y=-131 ରେ x ସ୍ଥାନରେ -\frac{10y}{39}+\frac{1199}{13} ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{6}{13}y-\frac{10791}{65}-y=-131
-1.8 କୁ -\frac{10y}{39}+\frac{1199}{13} ଥର ଗୁଣନ କରନ୍ତୁ.
-\frac{7}{13}y-\frac{10791}{65}=-131
\frac{6y}{13} କୁ -y ସହ ଯୋଡନ୍ତୁ.
-\frac{7}{13}y=\frac{2276}{65}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{10791}{65} ଯୋଡନ୍ତୁ.
y=-\frac{2276}{35}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{7}{13} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=-\frac{10}{39}\left(-\frac{2276}{35}\right)+\frac{1199}{13}
x=-\frac{10}{39}y+\frac{1199}{13} ରେ y ପାଇଁ -\frac{2276}{35} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{4552}{273}+\frac{1199}{13}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{10}{39} କୁ -\frac{2276}{35} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=\frac{2287}{21}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{4552}{273} ସହିତ \frac{1199}{13} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=\frac{2287}{21},y=-\frac{2276}{35}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
3.9x+y=359.7,-1.8x-y=-131
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}359.7\\-131\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}359.7\\-131\end{matrix}\right)
\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}359.7\\-131\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}359.7\\-131\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3.9\left(-1\right)-\left(-1.8\right)}&-\frac{1}{3.9\left(-1\right)-\left(-1.8\right)}\\-\frac{-1.8}{3.9\left(-1\right)-\left(-1.8\right)}&\frac{3.9}{3.9\left(-1\right)-\left(-1.8\right)}\end{matrix}\right)\left(\begin{matrix}359.7\\-131\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ପାଇଁ, ଇନଭର୍ସ୍‌ ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ଫଳରେ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବେ ପୁନଃ ଲେଖାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{21}&\frac{10}{21}\\-\frac{6}{7}&-\frac{13}{7}\end{matrix}\right)\left(\begin{matrix}359.7\\-131\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{21}\times 359.7+\frac{10}{21}\left(-131\right)\\-\frac{6}{7}\times 359.7-\frac{13}{7}\left(-131\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2287}{21}\\-\frac{2276}{35}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=\frac{2287}{21},y=-\frac{2276}{35}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
3.9x+y=359.7,-1.8x-y=-131
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
-1.8\times 3.9x-1.8y=-1.8\times 359.7,3.9\left(-1.8\right)x+3.9\left(-1\right)y=3.9\left(-131\right)
\frac{39x}{10} ଏବଂ -\frac{9x}{5} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ -1.8 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 3.9 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-7.02x-1.8y=-647.46,-7.02x-3.9y=-510.9
ସରଳୀକୃତ କରିବା.
-7.02x+7.02x-1.8y+3.9y=-647.46+510.9
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -7.02x-1.8y=-647.46 ଠାରୁ -7.02x-3.9y=-510.9 କୁ ବିୟୋଗ କରନ୍ତୁ.
-1.8y+3.9y=-647.46+510.9
-\frac{351x}{50} କୁ \frac{351x}{50} ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -\frac{351x}{50} ଏବଂ \frac{351x}{50} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
2.1y=-647.46+510.9
-\frac{9y}{5} କୁ \frac{39y}{10} ସହ ଯୋଡନ୍ତୁ.
2.1y=-136.56
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା 510.9 ସହିତ -647.46 ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=-\frac{2276}{35}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 2.1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
-1.8x-\left(-\frac{2276}{35}\right)=-131
-1.8x-y=-131 ରେ y ପାଇଁ -\frac{2276}{35} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
-1.8x=-\frac{6861}{35}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{2276}{35} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{2287}{21}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -1.8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=\frac{2287}{21},y=-\frac{2276}{35}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.